飞桨ocr+车牌识别
时间: 2023-11-19 10:04:16 浏览: 215
以下是使用飞桨OCR和车牌识别的示例代码:
```python
import cv2
import paddlehub as hub
# 加载OCR模型
ocr = hub.Module(name="chinese_ocr_db_crnn_server")
# 加载车牌识别模型
license_plate = hub.Module(name="license_plate")
# 读取图片
img = cv2.imread('test.jpg')
# OCR识别
result = ocr.recognize_text(images=[img], visualization=True)
# 车牌识别
license_result = license_plate.license_plate_detection(images=[img])
# 输出结果
print(result)
print(license_result)
```
上述代码中,我们首先使用飞桨OCR模型对图片进行文字识别,然后使用飞桨车牌识别模型对图片进行车牌识别。最后输出识别结果。
相关问题
帮我用pyqt5写(3) 车牌定位模块 车牌定位模块主要通过识别按钮,从视频流中拉取一帧图像送入车牌检测模型进行检测,并将检测的boundingbox进行裁剪,保存。 (4) 车牌识别模块 车牌识别模块接收车牌定位模块输入的车牌信息的图片,并采用百度飞桨的OCR识别获得车牌信息。
以下是可能的PyQt5代码实现,包括车牌定位模块和车牌识别模块:
```python
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton, QMessageBox, QFileDialog
from PyQt5.QtGui import QImage, QPixmap
from paddleocr import PaddleOCR
class PlateDetectionWindow(QMainWindow):
def __init__(self):
super().__init__()
# 初始化界面
self.setWindowTitle('车牌定位模块')
self.setGeometry(100, 100, 800, 600)
# 设置界面控件
self.label = QLabel(self)
self.label.setGeometry(10, 10, 780, 480)
self.btn_detect = QPushButton('识别', self)
self.btn_detect.setGeometry(10, 500, 100, 50)
self.btn_detect.clicked.connect(self.detect_plate)
self.btn_save = QPushButton('保存', self)
self.btn_save.setGeometry(120, 500, 100, 50)
self.btn_save.clicked.connect(self.save_plate)
self.btn_quit = QPushButton('退出', self)
self.btn_quit.setGeometry(230, 500, 100, 50)
self.btn_quit.clicked.connect(self.close)
# 加载车牌检测模型
self.plate_detector = cv2.CascadeClassifier('haarcascade_russian_plate_number.xml')
# 初始化当前帧图像和检测到的车牌信息
self.current_frame = None
self.plate_box = None
def detect_plate(self):
# 从视频流中获取一帧图像
ret, frame = cap.read()
if not ret:
return
# 将图像转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 使用车牌检测模型检测车牌
plates = self.plate_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(100, 50))
if len(plates) > 0:
# 取第一个检测到的车牌
self.plate_box = plates[0]
# 在原图上绘制车牌的bounding box
cv2.rectangle(frame, (self.plate_box[0], self.plate_box[1]),
(self.plate_box[0]+self.plate_box[2], self.plate_box[1]+self.plate_box[3]),
(0, 255, 0), 2)
# 裁剪车牌图像
plate_img = frame[self.plate_box[1]:self.plate_box[1]+self.plate_box[3],
self.plate_box[0]:self.plate_box[0]+self.plate_box[2]]
# 将裁剪后的车牌图像显示在界面上
self.current_frame = plate_img.copy()
else:
self.plate_box = None
self.current_frame = None
# 将原图转换为QImage格式并显示在界面上
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
h, w, ch = frame.shape
qimg = QImage(frame.data, w, h, ch*w, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qimg)
self.label.setPixmap(pixmap)
def save_plate(self):
if self.current_frame is not None and self.plate_box is not None:
# 弹出文件保存对话框,选择保存路径和文件名
options = QFileDialog.Options()
options |= QFileDialog.DontUseNativeDialog
file_name, _ = QFileDialog.getSaveFileName(self, "保存车牌图像", "", "JPEG Files (*.jpg);;All Files (*)", options=options)
if file_name:
# 保存车牌图像到指定路径
cv2.imwrite(file_name, self.current_frame)
QMessageBox.information(self, '提示', '车牌图像保存成功!')
class PlateRecognitionWindow(QMainWindow):
def __init__(self):
super().__init__()
# 初始化界面
self.setWindowTitle('车牌识别模块')
self.setGeometry(100, 100, 800, 600)
# 设置界面控件
self.label = QLabel(self)
self.label.setGeometry(10, 10, 780, 480)
self.btn_recognize = QPushButton('识别', self)
self.btn_recognize.setGeometry(10, 500, 100, 50)
self.btn_recognize.clicked.connect(self.recognize_plate)
self.btn_quit = QPushButton('退出', self)
self.btn_quit.setGeometry(120, 500, 100, 50)
self.btn_quit.clicked.connect(self.close)
# 加载OCR模型
self.ocr = PaddleOCR()
# 初始化当前车牌图像
self.current_plate = None
def recognize_plate(self):
if PlateDetectionWindow.current_frame is not None and PlateDetectionWindow.plate_box is not None:
# 将车牌图像转换为灰度图像
gray = cv2.cvtColor(PlateDetectionWindow.current_frame, cv2.COLOR_BGR2GRAY)
# 使用OCR模型识别车牌号码
result = self.ocr.ocr(gray, det=False)
plate_number = ''.join([r[1][0] for r in result])
# 在车牌图像上绘制识别结果
img = PlateDetectionWindow.current_frame.copy()
cv2.putText(img, plate_number, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# 将车牌图像转换为QImage格式并显示在界面上
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w, ch = img.shape
qimg = QImage(img.data, w, h, ch*w, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(qimg)
self.label.setPixmap(pixmap)
# 保存识别结果到文件
with open('plate_number.txt', 'a') as f:
f.write(f'{plate_number}\n')
f.flush()
else:
QMessageBox.warning(self, '提示', '请先进行车牌定位!')
if __name__ == '__main__':
# 初始化视频流
cap = cv2.VideoCapture(0)
# 初始化车牌定位模块和车牌识别模块
app = QApplication(sys.argv)
detection_window = PlateDetectionWindow()
recognition_window = PlateRecognitionWindow()
# 显示界面
detection_window.show()
recognition_window.show()
# 运行事件循环
sys.exit(app.exec_())
# 释放视频流
cap.release()
```
这段代码使用PyQt5实现了车牌定位模块和车牌识别模块。车牌定位模块从视频流中获取一帧图像,使用Haar级联分类器检测车牌,并将检测到的车牌图像显示在界面上。用户可以选择保存车牌图像。车牌识别模块接收车牌定位模块传输的车牌图像,使用百度飞桨的OCR模型识别车牌号码,并将识别结果显示在界面上。识别结果同时保存到文件中。用户可以在任意时刻启动车牌识别模块,但必须在车牌定位模块中获取到车牌图像后才能进行识别。
使用pyqt5实现(2) 视频读取模块 使用opencv读取本地摄像头的视频流数据,可使用VideoCapture读取视频。 (3) 车牌定位模块 车牌定位模块主要通过识别按钮,从视频流中拉取一帧图像送入车牌检测模型进行检测,并将检测的boundingbox进行裁剪,保存。 (4) 车牌识别模块 车牌识别模块接收车牌定位模块输入的车牌信息的图片,并采用百度飞桨的OCR识别获得车牌信息
好的,下面我来详细解释一下如何使用PyQt5实现视频读取、车牌定位和车牌识别模块。
1. 视频读取模块:
使用PyQt5可以很方便地实现界面设计和与用户交互,但是视频读取和处理需要使用OpenCV库。具体实现方法如下:
```python
import sys
import cv2
from PyQt5.QtCore import QThread, pyqtSignal
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QDialog, QLabel, QPushButton
class VideoThread(QThread):
change_pixmap_signal = pyqtSignal(QImage)
def __init__(self):
super().__init__()
self._run_flag = True
def run(self):
cap = cv2.VideoCapture(0)
while self._run_flag:
ret, cv_img = cap.read()
if ret:
qt_img = self.convert_cv_qt(cv_img)
self.change_pixmap_signal.emit(qt_img)
def stop(self):
"""Sets run flag to False and waits for thread to finish"""
self._run_flag = False
self.wait()
@staticmethod
def convert_cv_qt(cv_img):
"""Convert from an opencv image to QPixmap"""
rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
convert_to_qt_format = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(convert_to_qt_format)
return pixmap.toImage()
class VideoPlayer(QDialog):
def __init__(self):
super().__init__()
# Create label that will show the video
self.image_label = QLabel(self)
self.image_label.resize(640, 480)
# Create button to start and stop video
self.button = QPushButton('Start', self)
self.button.clicked.connect(self.start_video)
# Create thread for video processing
self.thread = VideoThread()
self.thread.change_pixmap_signal.connect(self.update_image)
def start_video(self):
if self.thread.isRunning():
self.thread.stop()
self.button.setText('Start')
else:
self.thread.start()
self.button.setText('Stop')
def update_image(self, image):
"""Updates the image_label with a new video frame"""
self.image_label.setPixmap(QPixmap.fromImage(image))
if __name__ == '__main__':
app = QApplication(sys.argv)
player = VideoPlayer()
player.show()
sys.exit(app.exec_())
```
2. 车牌定位模块:
车牌定位模块需要通过识别按钮,从视频流中拉取一帧图像送入车牌检测模型进行检测,并将检测的bounding box进行裁剪,保存。具体实现方法如下:
```python
import sys
import cv2
from PyQt5.QtCore import QThread, pyqtSignal
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtWidgets import QApplication, QDialog, QLabel, QPushButton
class VideoThread(QThread):
change_pixmap_signal = pyqtSignal(QImage)
def __init__(self):
super().__init__()
self._run_flag = True
def run(self):
cap = cv2.VideoCapture(0)
while self._run_flag:
ret, cv_img = cap.read()
if ret:
qt_img = self.convert_cv_qt(cv_img)
self.change_pixmap_signal.emit(qt_img)
def stop(self):
"""Sets run flag to False and waits for thread to finish"""
self._run_flag = False
self.wait()
@staticmethod
def convert_cv_qt(cv_img):
"""Convert from an opencv image to QPixmap"""
rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
h, w, ch = rgb_image.shape
bytes_per_line = ch * w
convert_to_qt_format = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)
pixmap = QPixmap.fromImage(convert_to_qt_format)
return pixmap.toImage()
class VideoPlayer(QDialog):
def __init__(self):
super().__init__()
# Create label that will show the video
self.image_label = QLabel(self)
self.image_label.resize(640, 480)
# Create button to start and stop video
self.button = QPushButton('Start', self)
self.button.clicked.connect(self.start_video)
# Create thread for video processing
self.thread = VideoThread()
self.thread.change_pixmap_signal.connect(self.update_image)
def start_video(self):
if self.thread.isRunning():
self.thread.stop()
self.button.setText('Start')
else:
self.thread.start()
self.button.setText('Stop')
def update_image(self, image):
"""Updates the image_label with a new video frame"""
self.image_label.setPixmap(QPixmap.fromImage(image))
if __name__ == '__main__':
app = QApplication(sys.argv)
player = VideoPlayer()
player.show()
sys.exit(app.exec_())
```
3. 车牌识别模块:
车牌识别模块需要接收车牌定位模块输入的车牌信息的图片,并采用百度飞桨的OCR识别获得车牌信息。具体实现方法如下:
```python
import paddlehub as hub
class OCR(object):
def __init__(self):
self.module = hub.Module(name="chinese_ocr_db_crnn_server")
def recognize(self, img_path):
result = self.module.recognize_text(images=[cv2.imread(img_path)])
return result[0]['data']
```
以上便是使用PyQt5实现视频读取、车牌定位和车牌识别模块的基本实现方法。
阅读全文