jupyter spark.sql()
时间: 2023-10-17 10:34:24 浏览: 105
在Jupyter Notebook中使用Spark SQL时,可以通过`spark.sql()`函数来执行SQL查询。这个函数可以接受一个字符串参数,该参数是你要执行的SQL语句。例如,你可以使用以下代码来执行一个简单的SQL查询:
```
spark.sql('SELECT * FROM user').show()
```
这将执行一个SELECT语句,从名为"user"的表中检索所有的行,并将结果显示出来。你可以根据需要编写不同的SQL查询来操作和分析你的数据。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [PySpark实战(四)——活用PySpark( DataFrames 与 Spark SQL)_Jupyter notebook中运行](https://blog.csdn.net/qq_44274736/article/details/129665044)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [Spark-core/SparkSQL总结及如何通过Jupyter交互式运行pyspark任务(spark on yarn)](https://blog.csdn.net/a1314_521a/article/details/126368419)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文