voc2017数据集划分
时间: 2023-09-14 10:13:39 浏览: 196
VOC2017数据集的划分可以按照以下步骤进行:
1. 首先,确保你已经准备好了VOC2017数据集文件夹,其中包含Annotations文件夹、JPEGImages文件夹和ImageSets文件夹。
2. 在ImageSets文件夹下创建一个新的子文件夹,命名为Main。
3. 在Main文件夹中创建四个文本文件:train.txt、val.txt、trainval.txt和test.txt。
4. 打开trainval.txt文件,将VOC2017数据集中用于训练和验证的图片名称写入该文件。可以根据需要自定义训练和验证集的比例。
5. 打开test.txt文件,将VOC2017数据集中用于测试的图片名称写入该文件。
6. 现在,你可以使用split_imagesets_main函数来划分图像名称。该函数会根据trainval.txt和test.txt中的图片名称将图像划分为训练集和测试集。
7. 如果需要划分图像的绝对路径,可以使用split_abspath函数。这个函数可以根据需要自定义图像的绝对路径。
通过以上步骤,你可以完成VOC2017数据集的划分。请注意,这只是一种常见的划分方法,你可以根据自己的需求进行调整。\[2\]\[3\]
#### 引用[.reference_title]
- *1* *2* *3* [【数据集操作】划分数据集为VOC数据格式](https://blog.csdn.net/LWD19981223/article/details/125069611)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文