设计一个扩张卷积模块,具体过程为首先使用1×1深度可分离卷积压缩通道,然后使用不同大小的深度可分离卷积分别为5*5、7*7、9*9和由它们构造的不同膨胀速率的扩张卷积形成多个平行分支,膨胀率分别为5、7和9。此外,还有一个残差连接分支。最后,将这些并行分支的输出拼接在一起,再输出一个1×1深度可分离卷积,形成特征图y,请按照上述要求编写出可以应用到yolov5上的代码
时间: 2024-03-03 15:47:15 浏览: 80
以下是基于PyTorch实现的扩张卷积模块代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ExpandConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(ExpandConv, self).__init__()
mid_channels = in_channels // 2
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True)
)
self.conv2_5 = nn.Sequential(
nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=2, dilation=2, groups=mid_channels),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.conv2_7 = nn.Sequential(
nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=3, dilation=3, groups=mid_channels),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.conv2_9 = nn.Sequential(
nn.Conv2d(mid_channels, mid_channels, kernel_size=3, padding=4, dilation=4, groups=mid_channels),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
self.residual = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
x1 = self.conv1(x)
x2_5 = self.conv2_5(x1)
x2_7 = self.conv2_7(x1)
x2_9 = self.conv2_9(x1)
res = self.residual(x)
out = torch.cat([x2_5, x2_7, x2_9, res], dim=1)
out = nn.Conv2d(out.size(1), out.size(1), kernel_size=1)(out)
return out
```
在Yolov5的网络结构中,可以将这个扩张卷积模块嵌入到主干网络中,例如:
```python
import torch
import torch.nn as nn
from models.common import Conv, BottleneckCSP
from models.expand_conv import ExpandConv
class YoloV5(nn.Module):
def __init__(self, num_classes=80):
super(YoloV5, self).__init__()
self.num_classes = num_classes
self.backbone = nn.Sequential(
# C1
Conv(3, 32, 3, 1, activation='hardswish'),
# C2
BottleneckCSP(32, 64, n=2, shortcut=True),
# C3
BottleneckCSP(64, 128, n=3, shortcut=True),
# C4
BottleneckCSP(128, 256, n=9, shortcut=True),
# C5
BottleneckCSP(256, 512, n=9, shortcut=True),
# C6
BottleneckCSP(512, 1024, n=3, shortcut=False),
# SPP
Conv(1024, 1024, 1, 1, activation='hardswish'),
ExpandConv(1024, 1024),
Conv(1024, 512, 1, 1, activation='hardswish')
)
self.head = nn.Sequential(
# Final bottleneck
BottleneckCSP(512, 1024, shortcut=False),
# Detect
nn.Conv2d(1024, 255, kernel_size=1, stride=1, padding=0)
)
def forward(self, x):
x = self.backbone(x)
x = self.head(x)
x = x.view(x.size(0), -1, self.num_classes + 5)
return x
```
在SPP层之后,我们添加了一个ExpandConv模块,然后再接上一个1x1卷积层。注意,这里的512是SPP输出的通道数,1024是ExpandConv的输出通道数。
阅读全文