def MEAN_Spot(opt): # channel 1 inputs1 = layers.Input(shape=(42,42,1)) conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1) bn1 = layers.BatchNormalization()(conv1) pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1) do1 = layers.Dropout(0.3)(pool1) # channel 2 inputs2 = layers.Input(shape=(42,42,1)) conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2) bn2 = layers.BatchNormalization()(conv2) pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2) do2 = layers.Dropout(0.3)(pool2) # channel 3 inputs3 = layers.Input(shape=(42,42,1)) conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3) bn3 = layers.BatchNormalization()(conv3) pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3) do3 = layers.Dropout(0.3)(pool3) # merge 1 merged = layers.Concatenate()([do1, do2, do3]) # interpretation 1 merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(merged) merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv) flat = layers.Flatten()(merged_pool) flat_do = layers.Dropout(0.2)(flat) # outputs outputs = layers.Dense(1, activation='linear', name='spot')(flat_do) #Takes input u, v, os model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs]) model.compile( loss={'spot':'mse'}, optimizer=opt, metrics={'spot':tf.keras.metrics.MeanAbsoluteError()}, ) return model 这段代码哪里可以加注意力机制
时间: 2023-08-22 14:05:53 浏览: 104
libaio1和libmecab2.zip
可以在`merged_conv`之后添加注意力机制,如下所示:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
def attention(inputs, filters):
x = layers.GlobalAveragePooling2D()(inputs)
x = layers.Dense(filters // 8, activation='relu')(x)
x = layers.Dense(filters, activation='sigmoid')(x)
x = layers.Reshape((1, 1, filters))(x)
x = layers.Multiply()([inputs, x])
return x
def MEAN_Spot(opt):
# channel 1
inputs1 = layers.Input(shape=(42,42,1))
conv1 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs1)
bn1 = layers.BatchNormalization()(conv1)
pool1 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn1)
do1 = layers.Dropout(0.3)(pool1)
# channel 2
inputs2 = layers.Input(shape=(42,42,1))
conv2 = layers.Conv2D(3, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs2)
bn2 = layers.BatchNormalization()(conv2)
pool2 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn2)
do2 = layers.Dropout(0.3)(pool2)
# channel 3
inputs3 = layers.Input(shape=(42,42,1))
conv3 = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.001))(inputs3)
bn3 = layers.BatchNormalization()(conv3)
pool3 = layers.MaxPooling2D(pool_size=(3, 3), padding='same', strides=(3,3))(bn3)
do3 = layers.Dropout(0.3)(pool3)
# merge 1
merged = layers.Concatenate()([do1, do2, do3])
# attention
attn = attention(merged, filters=8)
# interpretation 1
merged_conv = layers.Conv2D(8, (5,5), padding='same', activation='relu', kernel_regularizer=l2(0.1))(attn)
merged_pool = layers.MaxPooling2D(pool_size=(2, 2), padding='same', strides=(2,2))(merged_conv)
flat = layers.Flatten()(merged_pool)
flat_do = layers.Dropout(0.2)(flat)
# outputs
outputs = layers.Dense(1, activation='linear', name='spot')(flat_do)
# Takes input u, v, os
model = keras.models.Model(inputs=[inputs1, inputs2, inputs3], outputs=[outputs])
model.compile(
loss={'spot':'mse'},
optimizer=opt,
metrics={'spot':tf.keras.metrics.MeanAbsoluteError()},
)
return model
```
以上代码将注意力机制添加在了`merged_conv`之后,通过`attention`函数实现。注意力机制可以增强模型对于重要特征的关注,提高模型性能。
阅读全文