如何对上述代码进行训练?写一段训练上述的代码
时间: 2024-02-09 21:10:14 浏览: 62
练习的代码
好的,以下是一个简单的训练代码示例:
```python
import torch.optim as optim
from torchvision import datasets, transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# define the training and validation datasets
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
val_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=128, shuffle=False)
# define the model and optimizer
model = BayesianCNN(num_classes=10, dropout_rate=0.5).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
# define the training loop
def train(model, optimizer, train_loader, epoch):
model.train()
train_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
pred_mean, pred_std = model(data)
loss = F.cross_entropy(pred_mean, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
train_loss /= len(train_loader.dataset)
print('Train Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss))
# define the validation loop
def validate(model, val_loader):
model.eval()
val_loss = 0.0
correct = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
pred_mean, pred_std = model(data)
val_loss += F.cross_entropy(pred_mean, target, reduction='sum').item()
pred = pred_mean.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
val_loss /= len(val_loader.dataset)
accuracy = 100. * correct / len(val_loader.dataset)
print('Validation set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
val_loss, correct, len(val_loader.dataset), accuracy))
# train the model for 10 epochs
for epoch in range(1, 11):
train(model, optimizer, train_loader, epoch)
validate(model, val_loader)
```
在这个示例中,我们首先定义了训练和验证数据集,并使用Adam优化器定义了模型。然后我们定义了训练和验证循环,使用`F.cross_entropy`作为损失函数。在训练循环中,我们计算输出的均值和标准差,并使用均值作为预测值进行损失计算。在验证循环中,我们计算输出的均值,并使用均值作为预测值进行损失计算和精度计算。
最后,我们使用训练和验证循环训练模型10个epochs,并在每个epoch结束后计算训练和验证集上的损失和精度。
阅读全文