生成一个不同图片交叉注意力pytorch代码
时间: 2024-02-12 10:04:39 浏览: 75
以下是一个生成不同图片交叉注意力的 PyTorch 代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DifferentImageCrossAttention(nn.Module):
def __init__(self, in_channels, out_channels):
super(DifferentImageCrossAttention, self).__init__()
self.conv_query = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv_key = nn.Conv2d(in_channels, out_channels, kernel_size=1)
self.conv_value = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x1, x2):
query = self.conv_query(x1)
key = self.conv_key(x2)
value = self.conv_value(x2)
query = query.view(query.size(0), -1, query.size(2) * query.size(3))
query = query.permute(0, 2, 1)
key = key.view(key.size(0), -1, key.size(2) * key.size(3))
attention = torch.bmm(query, key)
attention = F.softmax(attention, dim=-1)
value = value.view(value.size(0), -1, value.size(2) * value.size(3))
attention_value = torch.bmm(value, attention)
attention_value = attention_value.view(value.size(0), -1, x1.size(2), x1.size(3))
return attention_value
```
这是一个基本的不同图片交叉注意力模块,输入两个图片 x1 和 x2,然后通过三个卷积层将它们映射到同一维度,接着计算注意力矩阵并将其应用于 x2 的 value,最终得到输出 attention_value。这个模块的实现可能需要根据具体应用做出一些修改和调整。
阅读全文