给个stacking模型融合的代码
时间: 2023-06-18 20:04:41 浏览: 103
好的,下面是一个简单的 stacking 模型融合的代码示例:
```python
import numpy as np
from sklearn.model_selection import KFold
from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin, clone
class StackingRegressor(BaseEstimator, RegressorMixin, TransformerMixin):
def __init__(self, base_models, meta_model, n_folds=5):
self.base_models = base_models
self.meta_model = meta_model
self.n_folds = n_folds
def fit(self, X, y):
self.base_models_ = [list() for x in self.base_models]
self.meta_model_ = clone(self.meta_model)
kfold = KFold(n_splits=self.n_folds, shuffle=True)
out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models)))
for i, model in enumerate(self.base_models):
for train_index, holdout_index in kfold.split(X, y):
instance = clone(model)
self.base_models_[i].append(instance)
instance.fit(X[train_index], y[train_index])
y_pred = instance.predict(X[holdout_index])
out_of_fold_predictions[holdout_index, i] = y_pred
self.meta_model_.fit(out_of_fold_predictions, y)
return self
def predict(self, X):
meta_features = np.column_stack([
np.column_stack([model.predict(X) for model in base_models]).mean(axis=1)
for base_models in self.base_models_
])
return self.meta_model_.predict(meta_features)
```
使用方法:
```python
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
# 加载数据集
boston = load_boston()
X, y = boston.data, boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 定义基本模型
base_models = [RandomForestRegressor(n_estimators=10, random_state=0),
LinearRegression()]
# 定义元模型
meta_model = LinearRegression()
# 定义 stacking 模型
stacking_model = StackingRegressor(base_models, meta_model)
# 训练 stacking 模型
stacking_model.fit(X_train, y_train)
# 在测试集上预测
y_pred = stacking_model.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("MSE: %.4f" % mse)
```
注意:代码中的这个 `StackingRegressor` 类只是一个简单的示例,如果需要进行更复杂的模型融合,需要根据具体情况进行修改和优化。
阅读全文