模糊pid c语言讲解

时间: 2023-07-02 13:02:55 浏览: 39
### 回答1: 模糊PID(模糊比例积分微分)是一种用于控制系统的自适应控制方法。它的主要思想是将模糊逻辑与PID控制相结合,以提高控制系统对非线性和不确定性的鲁棒性和适应性。 在传统的PID控制器中,比例、积分和微分三个参数是固定的,通过经验或试错的方法进行调整。而在模糊PID控制中,这三个参数可以根据系统的实际情况进行自动调整。 模糊PID控制器通过模糊化输入和输出,建立模糊规则库,并利用推理机制生成模糊的控制输出。其中,模糊化输入将实际系统输入转化为模糊集,模糊化输出将模糊控制输出转化为实际控制信号。通过模糊规则库中的模糊规则,根据当前的输入和输出进行模糊推理,最终生成模糊的控制输出。 模糊PID控制器中的模糊规则库是根据专家经验和系统特性来构造的,其中包含了一系列的IF-THEN规则。例如,如果误差大,且误差变化率快,则输出增大;如果误差小,且误差变化率小,则输出减小。通过这些规则的综合运算,最终得到模糊的控制输出。 相对于传统的PID控制器,模糊PID控制具有更好的鲁棒性和适应性。它可以自动调整参数,适应不同系统的变化和干扰,使系统的控制更加准确和稳定。但是,模糊PID控制器也存在一些问题,如参数调整和规则库构建的困难、计算量大等。 总之,模糊PID控制是一种利用模糊逻辑与PID控制相结合的自适应控制方法。它通过模糊化输入和输出,建立模糊规则库,并利用推理机制生成模糊的控制输出。这种控制方法具有更好的鲁棒性和适应性,能够适应不同系统的变化和干扰,提高控制系统的性能。 ### 回答2: 模糊PID(Proportional Integral Derivative)是一种在控制系统中用于自动调节控制参数的算法。它通过不断地调整参数,使得实际输出与期望输出之间的误差最小化。 模糊PID相较于传统PID控制有所不同,传统PID控制中的参数是确定的,而模糊PID则在控制过程中根据实际情况进行动态调整。它引入了模糊逻辑的概念,可以处理一些模糊和非线性的控制问题。 模糊PID包含三个部分:比例控制、积分控制和微分控制。在比例控制中,调节量与误差成比例,通过增加或减少控制量来修正误差。积分控制中,根据误差的积分值来进行修正,可以快速消除长期持续的误差。微分控制则通过测量误差变化的速度来进行修正,以减小系统的超调量。 模糊PID的工作原理是将输入的模糊语言变量映射为模糊输出语言变量,然后将模糊输出语言变量转化为确定的控制量。这样就可以根据不同的输入和控制需求,采用不同的模糊逻辑进行处理。 在C语言中,模糊PID的实现通常需要定义模糊集合、模糊规则和模糊推理机制。模糊集合用于定义输入和输出的模糊语言变量,模糊规则则用于确定输入和输出之间的关系,而模糊推理机制根据输入的模糊语言变量和模糊规则,计算出模糊输出语言变量。 总之,模糊PID是一种灵活、适应性强的控制算法,可以处理一些复杂的控制问题。在C语言中实现模糊PID需要定义模糊集合、模糊规则和模糊推理机制,以实现输入和输出之间的模糊映射关系。 ### 回答3: 模糊PID(模糊比例积分微分控制)是一种基于模糊控制原理和PID控制器的变种控制算法。它是将PID控制器的比例、积分和微分部分替换为模糊逻辑阶段的处理,以实现对系统的控制。 在传统的PID控制器中,比例常数、积分时间以及微分时间是固定的,而模糊PID控制器则可以根据实时的系统状态动态调整这些参数。相比于传统的PID控制器,模糊PID控制器在非线性、时间变化较快或者参数未知的系统中表现更加稳定和有效。 模糊PID控制器首先需要建立一套模糊规则库,包含了输入和输出之间的模糊关系。当输入量被传入时,模糊控制器将通过模糊推理来确定输出。模糊推理根据模糊规则库,将输入的模糊集映射到输出的模糊集上。 然后,模糊PID控制器会对输出的模糊集进行解模糊,将其转化为具体的控制量。解模糊使用的方法有很多种,例如常用的就是将模糊集取其重心作为最终的输出值。 最后,模糊PID控制器会根据输出值来调整系统的控制量,以实现对系统的控制。这样,模糊PID控制器就可以根据实际需求和系统反馈信息动态地调整比例、积分和微分部分,从而实现更加准确和稳定的控制。 总结来说,模糊PID控制器建立在模糊控制的基础上,通过替换PID控制器的比例、积分和微分部分,实现了更加灵活和适应性强的控制算法。它在非线性、时间变化较快或者参数未知的系统中表现出色,提高了系统的控制性能。

相关推荐

### 回答1: RBF模糊PID是一种基于径向基函数网络(RBF)的模糊PID控制算法。RBF网络通常用于非线性控制,其输出基于输入变量与各自中心之间的距离关系。在模糊PID中,RBF网络的作用是将输入变量转化为模糊变量,然后进行模糊逻辑运算,最终输出模糊PID控制信号。这种算法的优点是能够适应非线性系统,且在控制性能和稳定性方面都表现出较好的效果。C语言作为一种高效、可移植的编程语言,亦被广泛应用于嵌入式系统中。将RBF模糊PID算法用C语言实现,不仅可以在一些嵌入式平台上实现控制任务,而且也便于算法的修改与优化。但是需要注意的是,C语言实现需要考虑内存消耗、运算时间等问题,同时还需注意算法可靠性和鲁棒性。总之,RBF模糊PID C语言实现为非线性控制在嵌入式系统中提供了一种有效的解决方案。 ### 回答2: RBF 模糊 PID 是一种采用 RBF 为基础函数、模糊控制为控制策略的 PID 控制器。RBF 模糊 PID 控制器主要包括三个部分:基于 RBF 网络的前馈控制器、基于前馈控制器的模糊控制器和 PID 控制器。其中,前馈控制器主要负责对控制对象进行前馈校正,以提高系统的响应速度和控制精度;模糊控制器则根据系统的状态进行模糊推理,输出模糊控制规则,从而实现对系统的优化控制;PID 控制器则在模糊规则输出的基础上进行反馈调节,确保系统的稳定性和鲁棒性。 相比于传统的 PID 控制器,RBF 模糊 PID 控制器具有以下优点:首先,由于采用了 RBF 网络的前馈控制和模糊控制相结合的策略,能够有效地提高系统的控制精度和稳定性;其次,通过对控制对象进行前馈校正,能够大大降低系统响应时间,提高系统速度;最后,在面对复杂的控制对象时,模糊控制具有较强的自适应性和鲁棒性,能够适应各种环境变化和控制对象的非线性、时变特性。 而在使用 C 语言实现 RBF 模糊 PID 控制器时,需要具有一定的编程基础,能够熟练掌握 C 语言的基本语法和数据结构,同时还需要了解控制理论和模糊控制算法的基本原理。在程序设计中,需要构建 RBF 网络并采用适当的算法进行训练,实现前馈校正和模糊推理,并结合 PID 控制器进行反馈控制。同时还需要考虑系统实时响应的问题,采用合适的数据采集和处理方式,确保控制器的同步性和稳定性。 ### 回答3: RBF模糊PID控制算法是一种基于神经网络理论和PID调节理论相结合的控制算法。RBF是径向基函数的缩写,是一种常用于神经网络的激活函数。该算法利用RBF神经网络对控制对象的非线性动态特性进行建模和预测,然后结合PID控制器进行优化控制,从而提高控制质量和控制效率。 该算法在应用中需要用到C语言进行编程。C语言是一种高性能、高效、灵活的编程语言,特别适用于开发实时控制系统和嵌入式系统。编写RBF模糊PID控制算法的C语言程序需要掌握相关的编程技巧和理论知识,包括神经网络的基本结构和算法、PID控制理论、控制系统的建模和仿真等方面的内容。 在实际应用中,RBF模糊PID控制算法可以广泛用于机械、电气、化工、冶金等领域的控制系统中,帮助工程师更好地解决控制问题,提高设备的稳定性和生产效率。同时,C语言编程技能也是现代工程师必备的基本技能之一,掌握这项技能可以为工程师未来的职业发展打下坚实的基础。
### 回答1: 模糊PID算法是一种基于模糊控制原理的PID优化控制算法,它利用模糊逻辑对PID参数进行调整,以提高系统的控制性能。C语言实现模糊PID算法需要定义模糊变量,定义模糊规则,定义模糊控制输出,以及定义控制器的控制策略等。 ### 回答2: 模糊PID算法是一种应用于控制系统的调节算法,用于自动化系统的控制和调节。它是在传统PID(比例-积分-微分)控制算法的基础上引入了模糊逻辑的概念,以便更好地应对非线性、时变的系统。 模糊PID算法的实现过程主要包括以下几个步骤: 1. 确定模糊规则库:首先需要确定系统的输入和输出变量,并将其进行模糊化处理,将连续的输入和输出转化为模糊集合,如“大、中、小”等。然后,根据经验和专家知识,建立模糊规则库,即描述输入和输出之间的关系。 2. 模糊推理:将输入变量和模糊规则库进行匹配,通过使用模糊逻辑运算,计算出模糊输出。 3. 解模糊化:将模糊输出转化为具体的数值,以便后续的控制操作。 4. PID控制:将解模糊化后的输出与实际输出进行比较,计算出PID控制器的输出。其中,比例控制项与模糊输出成正比,积分控制项与过去的误差累积成正比,微分控制项与误差的变化速度成正比。将PID控制器的输出作为控制系统的控制信号,进行系统的控制和调节。 模糊PID算法的实现可以使用C语言进行编程。首先需要定义输入和输出的模糊集合,并实现模糊化和解模糊化的函数。然后,根据专家经验和知识,建立模糊规则库,并通过模糊推理的方法计算出模糊输出。最后,根据PID控制的原理,结合模糊输出和实际输出,计算PID控制器的输出值,并实施系统的控制和调节。 总之,模糊PID算法是一种利用模糊逻辑的方法来实现控制系统自动调节的算法。通过合理地定义模糊集合、建立模糊规则库和采用模糊推理方法,可以有效地应对复杂的非线性、时变系统。而在C语言中实现模糊PID算法,则需要考虑输入输出的模糊化与解模糊化方法,以及模糊推理和PID控制的具体实现。
### 回答1: C语言模糊PID控制电机是利用模糊控制算法与PID控制算法相结合,对电机控制进行调节。模糊控制的优点是对于存在不确定性的控制系统具有鲁棒性,能够减小传统PID控制算法的振荡现象,提高系统的响应速度和稳定性。 模糊PID控制电机的基本步骤是:首先,通过传感器获取电机运行的实时数据,包括转速、位置等参数。然后,将这些数据经过模糊控制器的处理,得出模糊输出值。最后,将模糊输出值与PID控制器的输出值相结合,产生控制信号控制电机的运行。 模糊PID控制电机需要分别设计模糊控制器和PID控制器,对于不同的电机控制需求,还需要根据实际情况进行参数调整。在实际的应用中,模糊PID控制电机广泛应用于电动汽车、工业自动化、机器人等领域,具有较高的应用价值和发展前景。 ### 回答2: C语言模糊PID控制电机是一种利用模糊控制方法与PID控制算法相结合的电机控制策略。它在控制精度、抗干扰能力、适应性等方面比传统PID控制有了更好的表现。 模糊PID控制器的核心是模糊控制器和PID控制器。模糊控制器根据电机的状态和控制命令计算出输出控制量,PID控制器则调整输出控制量,使电机达到预定转速或位置。 模糊控制器的优点在于它对输入变量的不确定性更为敏感,可以更好地适应非线性系统和变化的工作环境。而PID控制器则能提供更高的精确度和更快的响应速度。结合两者的优点,模糊PID控制器能够在实际应用中更好地稳定控制电机,提高了电机的控制精度和可靠性。 总的来说,C语言模糊PID控制电机是一种高效的控制策略,可以充分利用C语言编程的优势,对电机进行更加精准、稳定的控制,提高了电机的工作效率和可靠性。 ### 回答3: C语言模糊PID控制电机是一种控制电机的方法,其中PID代表比例、积分和微分。使用PID控制可以确保电机在不同的负载和速度下保持稳定。通过使用模糊逻辑进行PID控制,我们可以更好地适应不断变化的工作环境。 在使用模糊PID控制电机时,我们首先需要收集一些数据,例如当前速度、负载和电压等信息,然后将这些数据作为输入交给模糊逻辑控制器。模糊逻辑控制器使用一组规则和隶属度函数来计算输出,该输出将用作PID控制器的输入。 最终输出的PID信号会根据电机的特定需求进行调整,以确保电机始终以最佳速度和负载运行。由于模糊PID控制方法可以实时调整输出信号,因此它可以更好地适应实时变化的工作环境,这使得它在很多行业中都被广泛应用,如制造业、交通运输、机器人控制等。 总之,C语言模糊PID控制电机是一种高级控制方法,可以确保电机在各种情况下稳定运行,并为实时变化的工作环境提供了更好的适应性。
以下是模糊PID水温控制的C语言示例代码: c #include <stdio.h> #define TEMP_SETPOINT 50 // 温度设定值 float temperature = 20; // 实时温度 float Kp = 0.5; // 模糊PID控制器比例系数 float Ki = 0.01; // 模糊PID控制器积分系数 float Kd = 0.1; // 模糊PID控制器微分系数 float last_error = 0; // 上一次误差 float error = 0; // 误差 float sum_error = 0; // 误差和 float fuzzy_set[3][3] = {{0, 0, 1}, {0, 1, 2}, {1, 2, 2}}; // 模糊集合 float rule_base[3][3] = {{0, 0, 0}, {-1, 0, 1}, {-2, -1, 0}}; // 规则库 float fuzzy_controller(float error) { float e; int row_index; // 行索引 int col_index; // 列索引 float u; // 控制输出 // 模糊化 if (error <= -10) { row_index = 0; e = 0; } else if (error < 0) { row_index = 1; e = (-1) * error / 10; } else { row_index = 2; e = error / 10; } if (e <= 0.5) { col_index = 0; } else if (e < 1.5) { col_index = 1; } else { col_index = 2; } // 基于规则库计算输出 u = rule_base[row_index][col_index]; // 反模糊化 return u; } float pid_controller(float setpoint, float input) { // 计算误差 last_error = error; error = setpoint - input; sum_error += error; // 计算PID控制器输出 return Kp * error + Ki * sum_error + Kd * (error - last_error); } int main() { int i; for (i = 0; i < 100; i++) { // 模拟实时温度变化 if (i < 50) { temperature += 0.5; } else { temperature -= 0.5; } // 控制器输出 float output = pid_controller(TEMP_SETPOINT, temperature); float fuzzy_output = fuzzy_set[(int)output + 1][(int)output + 1]; // 输出结果 printf("Time: %d Temperature: %.1f Output: %.1f Fuzzy Output: %.1f\n", i, temperature, output, fuzzy_output); } return 0; } 此处假设已经实现了模拟实时温度变化的模块,模糊PID控制器的核心代码在函数fuzzy_controller中实现,其中使用了输入误差的模糊化、基于规则库的模糊推理和输出结果的反模糊化。pid_controller函数是传统的PID控制器实现,其输出作为模糊PID控制器的输入,两者配合实现温度控制。
以下是一个简单的模糊PID温度控制的C语言程序,其中使用了模糊控制器和PID控制器结合的方法: c #include <stdio.h> // 模糊控制器 double fuzzy_control(double error) { double output = 0.0; // 根据误差值进行模糊判断 if (error < -20.0) { output = -1.0; } else if (error < 0.0) { output = error / -20.0; } else if (error < 20.0) { output = error / 20.0; } else { output = 1.0; } return output; } // PID控制器 double pid_control(double error, double last_error, double integral) { double kp = 1.0; // 比例系数 double ki = 0.5; // 积分系数 double kd = 0.2; // 微分系数 double derivative = error - last_error; // 计算微分项 integral += error; // 计算积分项 double output = kp * error + ki * integral + kd * derivative; // 计算PID输出 return output; } int main() { double setpoint = 70.0; // 设定温度 double temperature = 50.0; // 当前温度 double last_error = 0.0; // 上一次误差 double integral = 0.0; // 积分项 int i; for (i = 0; i < 10; i++) { // 模拟10个时间步长 double error = setpoint - temperature; // 计算误差 double fuzzy_output = fuzzy_control(error); // 模糊控制器输出 double pid_output = pid_control(error, last_error, integral); // PID控制器输出 double output = fuzzy_output * pid_output; // 模糊控制器输出和PID控制器输出的加权平均值,作为最终输出 printf("时间步长:%d,温度:%f,输出:%f\n", i, temperature, output); temperature += output; // 更新温度 last_error = error; // 更新误差 } return 0; } 在此程序中,模糊控制器根据误差值进行模糊判断,输出一个[-1,1]之间的模糊值;PID控制器根据误差、上一次误差以及积分项计算出一个PID输出。最终的输出是模糊控制器输出和PID控制器输出的加权平均值。程序中的温度变量可以替换成其他需要控制的变量,例如湿度、速度等等。
自适应模糊PID算法在温度控制方面具有很好的应用效果,可以实现更加精确的温度控制。下面是一个简单的C语言代码示例: c #include <stdio.h> // 定义PID参数 float kp = 0.5; // 比例系数 float ki = 0.2; // 积分系数 float kd = 0.1; // 微分系数 // 定义PID变量 float error = 0; // 当前温度误差 float integral = 0; // 温度误差积分项 float derivative = 0; // 温度误差微分项 float lastError = 0; // 上一次温度误差 // 定义温度变量 float setTemp = 37.0; // 目标温度 float currentTemp = 30.0; // 当前温度 // PID算法函数 float pid_algorithm() { // 计算温度误差 error = setTemp - currentTemp; // 计算积分项 integral += error; // 计算微分项 derivative = error - lastError; lastError = error; // 计算PID输出 float output = kp * error + ki * integral + kd * derivative; return output; } int main() { // 模拟温度控制过程 for (int i = 0; i < 10; i++) { // 通过传感器获取当前温度 currentTemp += pid_algorithm(); // 输出当前温度 printf("当前温度:%.2f\n", currentTemp); } return 0; } 以上是一个简单的自适应模糊PID算法的C语言代码示例,首先定义了PID参数(比例系数、积分系数和微分系数),然后定义了PID变量(温度误差、温度误差积分项、温度误差微分项和上一次温度误差)。 在主函数中,通过循环模拟了一个温度控制过程。在每次循环中,通过传感器获取当前温度,并利用PID算法计算出控制输出。最后输出当前温度。注意:此示例仅供参考,实际使用时需根据具体需求进行参数调整和优化。
以下是模糊PID控制温度的C语言示例代码: c #include <stdio.h> // 模糊 PID 控制器参数 #define Kp 1.0 #define Ki 0.5 #define Kd 0.1 // 模糊参数 #define NB 5 #define NM 7 #define NS 9 #define ZO 11 #define PS 13 #define PM 15 #define PB 17 // 模糊输入域和输出域 #define TEMP_MIN 0 #define TEMP_MAX 100 #define POWER_MIN 0 #define POWER_MAX 100 // 模糊集合函数 double fuzzySet[NB+NM+NS+1+PS+PM+PB]; // 模糊控制规则 double fuzzyRules[NB][NB+NM+NS+1+PS+PM+PB]; // 模糊PID控制器 double fuzzyPIDController(double error, double last_error, double sum_error) { // 计算误差的模糊值 int nb = error < -10 ? NB : (error < -5 ? (NB+NM)/2 : (error < 0 ? (NB+NM+NS)/3 : (error < 5 ? (NB+NM+NS+ZO)/4 : (error < 10 ? (NB+NM+NS+ZO+PS)/5 : PB)))); int nm = error < -10 ? NB : (error < -5 ? (NB+NM)/2 : (error < 0 ? (NB+NM+NS)/3 : (error < 5 ? (NB+NM+NS+ZO)/4 : (error < 10 ? (NB+NM+NS+ZO+PS)/5 : PB)))); int ns = error < -10 ? NB : (error < -5 ? (NB+NM)/2 : (error < 0 ? (NB+NM+NS)/3 : (error < 5 ? (NB+NM+NS+ZO)/4 : (error < 10 ? (NB+NM+NS+ZO+PS)/5 : PB)))); int zo = error < -5 ? (NB+NM)/2 : (error < 0 ? (NB+NM+NS)/3 : (error < 5 ? (NB+NM+NS+ZO)/4 : (error < 10 ? (NB+NM+NS+ZO+PS)/5 : PM))); int ps = error < 0 ? (NB+NM+NS+ZO)/4 : (error < 5 ? (NB+NM+NS+ZO+PS)/5 : (error < 10 ? (NB+NM+NS+ZO+PS+PM)/6 : (NB+NM+NS+ZO+PS+PM+PB)/7)); int pm = error < 0 ? (NB+NM+NS+ZO)/4 : (error < 5 ? (NB+NM+NS+ZO+PS)/5 : (error < 10 ? (NB+NM+NS+ZO+PS+PM)/6 : (NB+NM+NS+ZO+PS+PM+PB)/7)); int pb = error < 5 ? PM : (error < 10 ? (PM+PB)/2 : PB); // 计算误差的模糊输出 for (int i = 0; i <= PB; i++) { if (i < nb) { fuzzySet[i] = 0; } else if (i < nm) { fuzzySet[i] = (double)(i-nb)/(nm-nb); } else if (i < ns) { fuzzySet[i] = (double)(ns-i)/(ns-nm); } else if (i < zo) { fuzzySet[i] = (double)(zo-i)/(zo-ns); } else if (i < ps) { fuzzySet[i] = (double)(i-zo)/(ps-zo); } else if (i < pm) { fuzzySet[i] = (double)(pm-i)/(pm-ps); } else if (i < pb) { fuzzySet[i] = (double)(pb-i)/(pb-pm); } else { fuzzySet[i] = 0; } } // 计算模糊控制规则 for (int i = 0; i < NB; i++) { for (int j = 0; j <= PB; j++) { if (j < nb) { fuzzyRules[i][j] = 0; } else if (j < nm) { fuzzyRules[i][j] = (double)(j-nb)/(nm-nb); } else if (j < ns) { fuzzyRules[i][j] = (double)(ns-j)/(ns-nm); } else if (j < zo) { fuzzyRules[i][j] = (double)(zo-j)/(zo-ns); } else if (j < ps) { fuzzyRules[i][j] = (double)(j-zo)/(ps-zo); } else if (j < pm) { fuzzyRules[i][j] = (double)(pm-j)/(pm-ps); } else if (j < pb) { fuzzyRules[i][j] = (double)(pb-j)/(pb-pm); } else { fuzzyRules[i][j] = 0; } } } // 计算模糊输出 double output = 0; double sum_weight = 0; for (int i = 0; i <= PB; i++) { double weight = fuzzySet[i]; double delta_error = error - last_error; double power = (double)i/(PB-PM)*100; double control = Kp*fuzzyRules[nm][i] + Ki*fuzzyRules[ns][i] + Kd*fuzzyRules[pm][i]*(delta_error/sum_error); output += weight*control*power; sum_weight += weight; } output /= sum_weight; // 输出控制器参数 printf("fuzzySet:"); for (int i = 0; i <= PB; i++) { printf(" %.2f", fuzzySet[i]); } printf("\n"); printf("fuzzyRules:\n"); for (int i = 0; i < NB; i++) { for (int j = 0; j <= PB; j++) { printf("%.2f ", fuzzyRules[i][j]); } printf("\n"); } return output; } int main() { // 模拟温度控制 double target_temp = 50; double current_temp = 20; double last_error = 0; double sum_error = 0; while (1) { double error = target_temp - current_temp; double control_power = fuzzyPIDController(error, last_error, sum_error); // 更新温度 current_temp += control_power/10; last_error = error; sum_error += error; // 输出温度和控制力 printf("temp=%.2f, power=%.2f\n", current_temp, control_power); } return 0; } 注意:以上代码仅供参考,实际应用中需要根据具体需求进行修改和优化。

最新推荐

PID控制算法的C语言实现(完整版).doc

入门教材,适合广泛应用,对于初学者可以进行体系建立,了解当前时代更新知识。紧跟时代变化知识体系。快来看一看。

最全pid控制算法的C语言实现

最全pid控制算法的C语言实现,pid实现的经典算法大集合,基本都有了,有代码直接用

飞思卡尔智能车之PID用C语言实现讲解

主要讲解PID的C语言实现,可以用在工程应用中,也可以用在智能车的控制中,是一个很好的教程

PID控制算法的C语言实现(完整版)

PID控制算法的C语言实现(完整版) PID 控制算法的C 语言实现一PID 算法原理 最近两天在考虑一般控制算法的C 语言实现问题,发现网络上尚没有一套 完整的比较体系的讲解。于是总结了几天,整理一套思路分享给大家。 在...

PID控制算法算法C语言描述

第一个:PID控制算法的C语言实现(完整版),适合简单的PID算法实现。 第二个:主要讲述了模糊PID算法在直流电机控制系统中的应用 第三个:可以直接在TC运行,用模糊控制的方法调试KP、KI、KD参数 第四个:模糊自整...

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�