conf_matrix = confusion_matrix(out, label, conf_matrix)

时间: 2024-06-13 15:06:43 浏览: 180
根据提供的引用内容,无法确定`confusion_matrix()`函数的具体实现。但是可以根据引用和引用中的代码推测,`confusion_matrix()`函数可能是一个用于计算混淆矩阵的函数。在引用中,`plot_confusion_matrix()`函数被调用,并传入了一个名为`cm_normalized`的参数,该参数可能是一个已经被归一化的混淆矩阵。在引用中,`plot_confusion_matrix()`函数被定义,并传入了一个名为`cm`的参数,该参数可能是一个未被归一化的混淆矩阵。因此,可以猜测`confusion_matrix()`函数可能是一个用于计算混淆矩阵的函数,该函数可能会返回一个混淆矩阵。
相关问题

def plot_confuse(model, x_val, y_val): predictions = model.predict_classes(x_val) truelabel = y_val.argmax(axis=-1) # 将one-hot转化为label conf_mat = confusion_matrix(y_true=truelabel, y_pred=predictions) plt.figure() plot_confusion_matrix(conf_mat, range(np.max(truelabel) + 1))

如果你正在使用Keras的Sequential模型,那么你需要使用predict()方法获取模型的预测结果,如下所示: ```python import numpy as np # 假设你的模型是一个Sequential对象,名为model predictions = model.predict(x_val) predicted_classes = np.argmax(predictions, axis=1) truelabel = np.argmax(y_val, axis=1) # 将one-hot编码转化为标签形式 conf_mat = confusion_matrix(y_true=truelabel, y_pred=predicted_classes) plt.figure() plot_confusion_matrix(conf_mat, classes=range(np.max(truelabel) + 1)) ``` 这个代码将使用model的predict()方法获取模型的预测结果predictions,然后使用numpy.argmax()函数获取预测结果的类别predicted_classes。同时,使用numpy.argmax()函数将y_val从one-hot编码转化为标签形式,并保存在truelabel中。接下来,使用sklearn库中的confusion_matrix()函数计算混淆矩阵,并将其保存在conf_mat中。最后,使用自定义的plot_confusion_matrix()函数绘制混淆矩阵图。需要注意的是,classes参数应该是类别的列表,而不是类别标签的数组。

all_scores = []; n_samples = length(labels); n_class = length(unique(labels)); K = length(W); scores = cell(K,1); max_scores = zeros(K, n_samples); tmp_label = zeros(K, n_samples); for j=1:K projected_X = X * W{j}; scores{j} = projected_X * Y; [max_scores(j,:),tmp_label(j,:)] = max(scores{j}'); end [best_scores,best_idx] = max(max_scores,[],1); label_idx = sub2ind(size(tmp_label), best_idx, 1:n_samples); predict_label = tmp_label(label_idx); %compute the confusion matrix label_mat = sparse(labels,1:n_samples,1,n_class,n_samples); predict_mat = sparse(predict_label,1:n_samples,1,n_class, n_samples); conf_mat = label_mat * predict_mat'; conf_mat_diag = diag(conf_mat); n_per_class = sum(label_mat'); %mean class accuracy mean_class_accuracy = sum(conf_mat_diag ./ n_per_class') / n_class; %per sample accuracy mean_sample_accuracy = sum(conf_mat_diag) / n_samples;

这段代码是用于计算分类任务中的混淆矩阵和准确率的。让我解释一下它的逻辑: 首先,定义了一些变量,包括得分列表(all_scores)、样本数量(n_samples)和类别数量(n_class),以及一个矩阵W的长度(K)。 然后,创建了一些空的变量,包括得分矩阵(scores)、最大得分矩阵(max_scores)和临时标签矩阵(tmp_label)。 接下来,通过将输入矩阵X乘以每个权重矩阵W{j}来计算投影矩阵projected_X。然后,将投影矩阵projected_X与标签矩阵Y相乘,得到每个类别的得分矩阵scores{j}。 对于每个得分矩阵scores{j},找到每个样本的最大得分和对应的标签,并将它们存储在max_scores(j,:)和tmp_label(j,:)中。 接下来,找到所有样本中最大得分的索引和对应的标签,并将它们存储在best_scores和best_idx中。 使用best_idx和1:n_samples作为索引,从tmp_label中提取预测标签。 接下来,根据真实标签和预测标签创建稀疏矩阵label_mat和predict_mat,并计算它们的乘积,得到混淆矩阵conf_mat。 通过从混淆矩阵的对角线上获取元素,得到每个类别的正确预测数量conf_mat_diag。 计算每个类别的样本数量n_per_class。 计算平均类别准确率,即将每个类别的正确预测数量除以该类别的样本数量,并将结果相加后除以类别数量。 计算平均样本准确率,即将混淆矩阵对角线上的元素相加后除以样本数量。 这段代码的目的是评估分类模型的准确率和混淆矩阵,其中平均类别准确率是针对每个类别的样本数量进行加权的准确率指标,而平均样本准确率是针对所有样本的准确率指标。
阅读全文

相关推荐

给下面这段代码中的预测结果实现可视化操作:from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB import jieba from sklearn.model_selection import train_test_split import numpy as np import matplotlib.pyplot as plt good_comments = [] bad_comments = [] with open('D:\PyCharmProjects\爬虫测试\好评.txt', 'r', encoding='gbk') as f: for line in f.readlines(): good_comments.append(line.strip('\n')) with open('D:\PyCharmProjects\爬虫测试\差评.txt', 'r', encoding='gbk') as f: for line in f.readlines(): bad_comments.append(line.strip('\n')) with open('StopWords.txt', 'r', encoding='utf-8') as f: stopwords = f.read().splitlines() good_words = [] for line in good_comments: words = jieba.cut(line, cut_all=False) words = [w for w in words if w not in stopwords] good_words.append(' '.join(words)) bad_words = [] for line in bad_comments: words = jieba.cut(line, cut_all=False) words = [w for w in words if w not in stopwords] bad_words.append(' '.join(words)) # 将文本转换为向量 vectorizer = CountVectorizer() X = vectorizer.fit_transform(good_words + bad_words) y = [1] * len(good_words) + [0] * len(bad_words) # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 训练模型 clf = MultinomialNB() clf.fit(X_train, y_train) # 测试模型并计算准确率 pred = clf.predict(X_test) accuracy = sum(pred == y_test) / len(y_test) print('准确率:{:.2%}'.format(accuracy)) # 预测新数据的类别 with open('测试评论.txt', 'r', encoding='utf-8') as f: count = 0 for line in f.readlines(): count += 1 test_text = line.strip('\n') test_words = ' '.join(jieba.cut(test_text, cut_all=False)) test_vec = vectorizer.transform([test_words]) pred = clf.predict(test_vec) if pred[0] == 1: print(count, '好评') else: print(count, '差评')

最新推荐

recommend-type

Python项目-实例-02 代码雨.zip

Python课程设计,含有代码注释,新手也可看懂。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。
recommend-type

深入了解Django框架:Python中的网站开发利器

资源摘要信息:"Django 是一个高级的 Python Web 框架,它鼓励快速开发和干净、实用的设计。它负责处理 Web 开发中的许多常见任务,因此开发者可以专注于编写应用程序,而不是重复编写代码。Django 旨在遵循 DRY(Don't Repeat Yourself,避免重复自己)原则,为开发者提供了许多默认配置,这样他们就可以专注于构建功能而不是配置细节。" 知识点: 1. Django框架的定义与特点:Django是一个开源的、基于Python的高级Web开发框架。它以简洁的代码、快速开发和DRY原则而著称。Django的设计哲学是“约定优于配置”(Conventions over Configuration),这意味着它为开发者提供了一系列约定和默认设置,从而减少了为每个项目做出决策的数量。 2. Django的核心特性:Django具备许多核心功能,包括数据库模型、ORM(对象关系映射)、模板系统、表单处理以及内容管理系统等。Django的模型系统允许开发者使用Python代码来定义数据库模式,而不需要直接写SQL代码。Django的模板系统允许分离设计和逻辑,使得非编程人员也能够编辑页面内容。 3. Django的安全性:安全性是Django框架的一个重要组成部分。Django提供了许多内置的安全特性,如防止SQL注入、跨站请求伪造(CSRF)保护、跨站脚本(XSS)防护和密码管理等。这些安全措施大大减少了常见Web攻击的风险。 4. Django的应用场景:Django被广泛应用于需要快速开发和具有丰富功能集的Web项目。它的用途包括内容管理系统(CMS)、社交网络站点、科学数据分析平台、电子商务网站等。Django的灵活性和可扩展性使它成为许多开发者的首选。 5. Django的内置组件:Django包含一些内置组件,这些组件通常在大多数Web应用中都会用到。例如,认证系统支持用户账户管理、权限控制、密码管理等功能。管理后台允许开发者快速创建一个管理站点来管理网站内容。Django还包含缓存系统,用于提高网站的性能,以及国际化和本地化支持等。 6. Django与其他技术的整合:Django能够与其他流行的技术和库无缝整合,如与CSS预处理器(如SASS或LESS)配合使用,与前端框架(如React、Vue或Angular)协同工作,以及与关系型数据库(如PostgreSQL、MySQL)以及NoSQL数据库(如MongoDB)集成。 7. Django的学习与社区资源:Django有一个活跃的社区和丰富的学习资源,包括官方文档、社区论坛、教程网站和大量的书籍。对于初学者来说,Django的官方教程是一个很好的起点,它会引导开发者从基础到创建一个完整的Django项目。 8. Django版本和兼容性:Django遵循语义化版本控制,每个版本都有特定的稳定性和新特性。开发者需要根据自己的项目需求选择合适的Django版本。同时,为了确保项目的正常运行,需要关注Django版本更新的兼容性问题,并根据需要进行代码调整或升级。 9. Django与Python的关系:作为Python的Web框架,Django充分利用了Python语言的简洁和易读性。随着Python语言的发展,Django也在不断更新,以支持最新的Python语言特性。Django和Python之间的紧密集成使得两者相辅相成。 10. Django的扩展和插件:Django的生态系统中存在大量扩展和插件,这些扩展覆盖了从支付处理、API开发到数据分析的各种领域。开发者可以通过使用这些扩展和插件,加速开发流程,降低开发难度。 通过以上知识点的总结,可以全面了解Django框架的各个方面,从其基本概念到应用场景,再到如何与Python和其他技术整合,以及社区支持和版本管理等。对于希望从事Web开发的开发者来说,掌握Django将是一个宝贵的技能,它能够帮助开发者高效地构建复杂的Web应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Thermo-calc中文版:预测材料热膨胀行为的精确科学

![Thermo-calc中文版:预测材料热膨胀行为的精确科学](https://thermocalc.com/wp-content/uploads/2022/05/thermo-calc-release-2022b-social-media-v02-1000x563-1.png) 参考资源链接:[Thermo-Calc中文用户指南:入门与精通](https://wenku.csdn.net/doc/5hpcx03vej?spm=1055.2635.3001.10343) # 1. Thermo-calc中文版概述 Thermo-calc中文版作为材料科学领域内的重要工具,其核心功能是帮助
recommend-type

5.1输出一个整数的逆序数

在编程中,将一个整数的逆序数是指按照位权从右到左读取数字得到的新数。例如,整数123的逆序数就是321。这里有一种常见的做法是通过循环或递归来逐位取出并累加: 1. **迭代法**: ```python def reverse_number(n): rev = 0 while n > 0: rev = rev * 10 + n % 10 n = n // 10 return rev # 示例 print(reverse_number(123)) # 输出:321 ```
recommend-type

Spring Boot集成框架示例:深入理解与实践

资源摘要信息:"Spring Boot子的例子是一个展示如何将Spring Boot与不同框架集成的实践案例集合。Spring Boot是基于Spring的框架,旨在简化Spring应用的创建和开发过程。其设计目标是使得开发者可以更容易地创建独立的、生产级别的Spring基础应用。Spring Boot提供了一个快速启动的特性,可以快速配置并运行应用,无需繁琐的XML配置文件。 Spring Boot的核心特性包括: 1. 自动配置:Spring Boot能够自动配置Spring和第三方库,它会根据添加到项目中的jar依赖自动配置Spring应用。例如,如果项目中添加了H2数据库的依赖,那么Spring Boot会自动配置内存数据库H2。 2. 起步依赖:Spring Boot使用一组称为‘起步依赖’的特定starter库,它们是一组集成了若干特定功能的库。这些起步依赖简化了依赖管理,并且能够帮助开发者快速配置Spring应用。 3. 内嵌容器:Spring Boot支持内嵌Tomcat、Jetty或Undertow容器,这意味着可以不需要外部容器即可运行应用。这样可以在应用打包为JAR文件时包含整个Web应用,简化部署。 4. 微服务支持:Spring Boot非常适合用于微服务架构,因为它可以快速开发出独立的微服务。Spring Boot天然支持与Spring Cloud微服务解决方案的集成。 5. 操作简便:Spring Boot提供一系列便捷命令行操作,例如spring-boot:run,这可以在开发环境中快速启动Spring Boot应用。 6. 性能监控:Spring Boot Actuator提供了生产级别的监控和管理特性,例如应用健康监控、审计事件记录等。 标签中提到的Java,意味着这个例子项目是使用Java语言编写的。Java是一种广泛使用的、面向对象的编程语言,它以其跨平台能力、强大的标准库和丰富的第三方库而闻名。 压缩包子文件的文件名称列表中只有一个名称‘springboot-main’。这暗示了整个项目可能被组织为一个主项目,其中可能包含了多个模块或子模块。在Maven或Gradle构建系统中,一个主项目可以包含多个子模块,每个模块负责应用中的不同部分或特性。Spring Boot允许开发者将应用分割为多个独立模块,每个模块可以有自己的配置和依赖,这对于大型应用的组织和维护非常有帮助。 从给出的信息中可以看出,springboot-main项目可能是一个包含多个集成示例的大型Spring Boot项目。开发者可以通过查看这个项目的代码示例,来学习如何将Spring Boot与各种不同的技术栈和框架集成起来,例如数据库、消息队列、搜索引擎、缓存框架等。这种集成能力是Spring Boot广泛应用在企业级应用开发中的一个重要原因。 综合以上信息,可以得出Spring Boot子的例子是一个很好的资源,用于学习如何利用Spring Boot的优势来快速开发出能够与其他框架无缝集成的应用程序。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Thermo-calc中文版:全面掌握材料相变的热力学秘籍

![Thermo-calc中文版:全面掌握材料相变的热力学秘籍](https://thermocalc.com/wp-content/uploads/2022/05/thermo-calc-release-2022b-social-media-v02-1000x563-1.png) 参考资源链接:[Thermo-Calc中文用户指南:入门与精通](https://wenku.csdn.net/doc/5hpcx03vej?spm=1055.2635.3001.10343) # 1. 热力学基础与相变概述 ## 1.1 热力学第一定律与能量守恒 热力学是研究能量转换和物质属性变化的科学。在
recommend-type

用C语言输入5个double类型的值,将它们储存到一个数组中并计算每个值的倒数

在C语言中,你可以使用`scanf`函数来输入5个`double`类型的值,并通过动态内存分配创建一个数组来存储这些值。接下来,你需要遍历这个数组并对每个元素求取倒数。下面是一个简单的示例: ```c #include <stdio.h> #include <math.h> int main() { double values[5]; // 创建一个可以存储5个double的数组 int i; printf("请输入5个double类型的值:\n"); for (i = 0; i < 5; i++) { scanf("%lf", &valu
recommend-type

52pojie.cn捷速OCR文字识别工具实用评测

资源摘要信息:"52pojie.cn捷速OCR文字识别_v5.3.rar"是一个OCR(光学字符识别)软件的压缩包文件,通常用于将图片、扫描文件或其他图像形式的文档转换成可编辑的文本格式。OCR技术是一种计算机视觉技术,它允许用户通过扫描纸质文档、图片或其他非文本格式的信息,自动将其中的文字内容转换成机器编码的文字,便于编辑和搜索。随着技术的发展,OCR技术已经非常成熟,并广泛应用于文档数字化、数据录入、信息提取等多个领域。 OCR软件的主要工作原理是通过算法分析图像文件中的文字布局和形状,然后将这些形状转换为对应的字符。不同的OCR软件在准确性和速度方面存在差异,这通常取决于软件所采用的技术和算法复杂性。OCR软件的核心挑战之一在于识别和纠正图像中的各种失真,如倾斜、扭曲、光线不均、背景噪声等,因此优秀的OCR软件往往集成了高级的图像预处理技术。 描述中提到的“文字扫描大王”暗示该软件可能在文字识别方面具有高效和准确的性能,适合于处理大量的文档转换工作。这样的工具对于图书管理员、档案工作者、科研人员、学生以及其他需要进行大量文档数字化的用户来说是极其有用的。它可能具备用户友好的界面,方便用户上传文档、选择识别参数、校对文本和导出结果。 尽管提供的标签为空,但根据标题和描述,可以推断该压缩包文件可能包含以下相关知识点: 1. OCR技术简介:解释OCR技术的定义、发展历程、工作原理以及在不同领域的应用。 2. 文字识别软件的功能和特性:详细描述OCR软件能够执行的任务,如图像预处理、文字提取、格式转换、语言识别等。 3. OCR软件的市场需求分析:探讨市场上对于OCR软件的需求,以及它解决的现实问题。 4. OCR软件的技术难点:介绍在OCR技术实施过程中可能遇到的挑战,如多语言支持、不同字体的识别、图像质量处理等。 5. 常见OCR软件对比:列举市面上其他流行的OCR解决方案,并与“文字扫描大王”进行功能和性能上的比较。 6. OCR软件的未来趋势:展望OCR技术的发展方向,包括人工智能和机器学习在提升OCR识别准确率方面的作用。 7. 操作指南:如果可能,还应包含对于如何下载、安装以及使用“文字扫描大王”OCR软件的基本指导。 以上知识点可以为感兴趣的用户或潜在用户提供一个全面的理解,关于OCR软件的功能、使用方法以及它在未来数字化时代中的重要性。