使用Python编写心脏病预测的代码,要求自己编写决策树和随机森林算法来实现这段代码不能导入sklearn库
时间: 2024-02-19 16:58:11 浏览: 82
Python基金动态可视化源码
5星 · 资源好评率100%
好的,如果不使用sklearn库,你可以手动实现决策树和随机森林算法,以下是参考代码:
1. 决策树算法实现
```python
# 定义节点类
class Node:
def __init__(self, feature=None, threshold=None, left=None, right=None, value=None):
self.feature = feature # 划分属性
self.threshold = threshold # 划分阈值
self.left = left # 左子树
self.right = right # 右子树
self.value = value # 叶节点值
# 定义决策树类
class DecisionTree:
def __init__(self, max_depth=None, min_samples_split=2, min_samples_leaf=1):
self.max_depth = max_depth # 树的最大深度
self.min_samples_split = min_samples_split # 内部节点分裂所需最小样本数
self.min_samples_leaf = min_samples_leaf # 叶节点所需最小样本数
self.root = None # 决策树根节点
# 计算基尼指数
def _gini(self, y):
_, counts = np.unique(y, return_counts=True)
proportions = counts / len(y)
return 1 - np.sum(proportions ** 2)
# 计算条件基尼指数
def _conditional_gini(self, X, y, feature, threshold):
left_idx = X[:, feature] < threshold
left_y = y[left_idx]
right_y = y[~left_idx]
left_gini = self._gini(left_y)
right_gini = self._gini(right_y)
left_prop = len(left_y) / len(y)
right_prop = len(right_y) / len(y)
return left_prop * left_gini + right_prop * right_gini
# 选择最优划分属性和阈值
def _best_split(self, X, y):
best_feature, best_threshold, best_score = None, None, np.inf
for feature in range(X.shape[1]):
thresholds = np.unique(X[:, feature])
for threshold in thresholds:
score = self._conditional_gini(X, y, feature, threshold)
if score < best_score:
best_feature, best_threshold, best_score = feature, threshold, score
return best_feature, best_threshold
# 递归构建决策树
def _build_tree(self, X, y, depth):
if depth == 0 or len(y) < self.min_samples_split or np.unique(y).shape[0] == 1:
return Node(value=np.mean(y))
feature, threshold = self._best_split(X, y)
if self._conditional_gini(X, y, feature, threshold) == np.inf:
return Node(value=np.mean(y))
left_idx = X[:, feature] < threshold
right_idx = X[:, feature] >= threshold
left = self._build_tree(X[left_idx], y[left_idx], depth - 1)
right = self._build_tree(X[right_idx], y[right_idx], depth - 1)
return Node(feature, threshold, left, right)
# 训练决策树
def fit(self, X, y):
self.root = self._build_tree(X, y, self.max_depth)
# 预测单个样本
def _predict_one(self, x, node):
if node.value is not None:
return node.value
if x[node.feature] < node.threshold:
return self._predict_one(x, node.left)
else:
return self._predict_one(x, node.right)
# 预测多个样本
def predict(self, X):
return np.array([self._predict_one(x, self.root) for x in X])
```
2. 随机森林算法实现
```python
# 定义随机森林类
class RandomForest:
def __init__(self, n_estimators=100, max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features=None):
self.n_estimators = n_estimators # 决策树个数
self.max_depth = max_depth # 树的最大深度
self.min_samples_split = min_samples_split # 内部节点分裂所需最小样本数
self.min_samples_leaf = min_samples_leaf # 叶节点所需最小样本数
self.max_features = max_features # 每棵决策树使用的最大特征数
self.trees = [] # 决策树集合
# 训练随机森林
def fit(self, X, y):
n_features = X.shape[1]
if self.max_features is None:
self.max_features = int(np.sqrt(n_features))
for _ in range(self.n_estimators):
indices = np.random.choice(n_features, self.max_features, replace=False)
tree = DecisionTree(max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf)
tree.fit(X[:, indices], y)
self.trees.append((indices, tree))
# 预测单个样本
def _predict_one(self, x):
predictions = []
for indices, tree in self.trees:
prediction = tree.predict(x[indices].reshape(1, -1))[0]
predictions.append(prediction)
return np.mean(predictions)
# 预测多个样本
def predict(self, X):
return np.array([self._predict_one(x) for x in X])
```
以上就是手动实现决策树和随机森林算法的代码,希望对你有所帮助!
阅读全文