spea2多目标优化代码
时间: 2023-11-12 12:00:39 浏览: 241
SPEA2MATLAB源代码
以下是spea2多目标优化的Python实现代码:
```python
import random
import copy
class Individual:
def __init__(self, num_objectives, chromosome_length, lower_bound, upper_bound):
self.num_objectives = num_objectives
self.chromosome_length = chromosome_length
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.objectives = [0.0] * num_objectives
self.dominated_by = []
self.dominating = 0
self.strength = 0
self.raw_fitness = 0
self.normalized_fitness = 0
self.chromosome = [random.uniform(lower_bound, upper_bound) for _ in range(chromosome_length)]
def evaluate(self, objectives_functions):
for i in range(self.num_objectives):
self.objectives[i] = objectives_functions[i](self.chromosome)
def dominates(self, other):
for i in range(self.num_objectives):
if self.objectives[i] > other.objectives[i]:
return False
return True
def __eq__(self, other):
return self.chromosome == other.chromosome
def __str__(self):
return f"chromosome: {self.chromosome}, objectives: {self.objectives}"
class SPEA2:
def __init__(self, num_objectives, chromosome_length, pop_size, archive_size, crossover_probability, mutation_probability, lower_bound, upper_bound, max_generations):
self.num_objectives = num_objectives
self.chromosome_length = chromosome_length
self.pop_size = pop_size
self.archive_size = archive_size
self.crossover_probability = crossover_probability
self.mutation_probability = mutation_probability
self.lower_bound = lower_bound
self.upper_bound = upper_bound
self.max_generations = max_generations
self.population = [Individual(num_objectives, chromosome_length, lower_bound, upper_bound) for _ in range(pop_size)]
self.archive = []
def environmental_selection(self):
for ind in self.population:
ind.dominated_by = []
ind.dominating = 0
for i in range(len(self.archive)):
for j in range(len(self.population)):
if self.archive[i].dominates(self.population[j]):
self.population[j].dominated_by.append(i)
elif self.population[j].dominates(self.archive[i]):
self.archive[i].dominating += 1
self.archive = [self.archive[i] for i in range(len(self.archive)) if self.archive[i].dominating < self.pop_size // 2]
for ind in self.population:
ind.strength = sum([self.archive[d].dominating for d in ind.dominated_by])
for ind in self.population:
ind.raw_fitness = 1.0 / (ind.strength + 2.0)
for ind in self.archive:
ind.raw_fitness = sum([self.population[d].strength for d in ind.dominated_by])
ind.normalized_fitness = ind.raw_fitness / (len(self.population) + len(self.archive))
self.archive.sort(key=lambda ind: ind.normalized_fitness, reverse=True)
self.archive = self.archive[:self.archive_size]
def create_offspring(self):
offspring = []
for i in range(self.pop_size):
p1 = random.choice(self.archive)
p2 = random.choice(self.archive)
while p1 == p2:
p2 = random.choice(self.archive)
child = copy.deepcopy(p1)
if random.random() < self.crossover_probability:
for j in range(self.chromosome_length):
if random.random() < 0.5:
child.chromosome[j] = p2.chromosome[j]
for j in range(self.chromosome_length):
if random.random() < self.mutation_probability:
child.chromosome[j] += random.gauss(0, 0.1)
if child.chromosome[j] < self.lower_bound:
child.chromosome[j] = self.lower_bound
elif child.chromosome[j] > self.upper_bound:
child.chromosome[j] = self.upper_bound
offspring.append(child)
return offspring
def run(self, objectives_functions):
for generation in range(self.max_generations):
print(f"Generation {generation + 1}/{self.max_generations}")
for ind in self.population:
ind.evaluate(objectives_functions)
self.archive += self.population
self.environmental_selection()
offspring = self.create_offspring()
self.population = offspring
```
这份代码实现了 SPEA2 算法,其中 `Individual` 类表示个体,包括染色体、对应的目标函数值、支配和被支配关系等信息;`SPEA2` 类则是算法的主体,包含了种群、非支配解集、交叉和变异概率、种群大小、迭代次数等参数,并实现了 SPEA2 算法的主要流程。在 `run` 方法中,我们需要传入一个目标函数列表 `objectives_functions`,它是一个长度为目标数的列表,其中每个元素是一个函数,用于计算某个个体的对应目标函数值。例如,如果我们要优化两个目标函数 $f_1(x)$ 和 $f_2(x)$,则 `objectives_functions` 可以定义为:
```python
def f1(x):
return x[0] ** 2
def f2(x):
return (x[0] - 2) ** 2
objectives_functions = [f1, f2]
```
在实际使用 SPEA2 算法时,我们可以根据具体问题来调整各参数的值,例如种群大小、迭代次数、交叉和变异概率等。
阅读全文