.csv数据中室外最高温,最低温,室内温度,室内人数作为输入,舒适度 = k1 × (室内温度 - 目标温度)² + k2 × (室外温度 - 室内温度)² + k3 × ln(室内人数)为目标函数,舒适度为输出,利用灰狼优化算法进行参数寻优,python
时间: 2024-02-18 21:59:30 浏览: 73
好的,你的问题是如何利用灰狼优化算法进行参数寻优,Python实现。下面是一个简单的实现示例:
首先,你需要导入需要的库:
```python
import numpy as np
import pandas as pd
```
然后,你需要编写目标函数:
```python
def objective_function(x, df, target_temp, k1, k2, k3):
indoor_temp = df['室内温度']
outdoor_temp = df['室外温度']
indoor_people = df['室内人数']
comfort = k1 * (indoor_temp - target_temp) ** 2 + k2 * (outdoor_temp - indoor_temp) ** 2 + k3 * np.log(indoor_people)
return comfort
```
其中,x 是优化算法需要优化的参数,df 是包含数据的 Pandas 数据框,target_temp 是目标温度,k1、k2、k3 是常数。
接下来,你需要实现灰狼优化算法:
```python
def gray_wolf_optimizer(df, target_temp, k1, k2, k3, n_iter, n_pop):
# 初始化种群
pop = np.random.uniform(-1, 1, size=(n_pop, 3))
# 计算适应度
fitness = [objective_function(x, df, target_temp, k1, k2, k3) for x in pop]
# 寻找最优个体
best_idx = np.argmin(fitness)
best = pop[best_idx]
# 开始迭代
for i in range(n_iter):
a = 2 - i * (2 / n_iter) # 确定 alpha 值
for j in range(n_pop):
# 计算 D 和 C
r1 = np.random.uniform()
r2 = np.random.uniform()
A1 = 2 * a * r1 - a
C1 = 2 * r2
D_alpha = abs(C1 * best - pop[j])
X1 = best - A1 * D_alpha
r1 = np.random.uniform()
r2 = np.random.uniform()
A2 = 2 * a * r1 - a
C2 = 2 * r2
D_beta = abs(C2 * best - pop[j])
X2 = best - A2 * D_beta
r1 = np.random.uniform()
r2 = np.random.uniform()
A3 = 2 * a * r1 - a
C3 = 2 * r2
D_delta = abs(C3 * best - pop[j])
X3 = best - A3 * D_delta
# 计算新个体
new = (X1 + X2 + X3) / 3
# 计算适应度
new_fitness = objective_function(new, df, target_temp, k1, k2, k3)
# 更新最优个体
if new_fitness < fitness[j]:
fitness[j] = new_fitness
pop[j] = new
if new_fitness < fitness[best_idx]:
best_idx = j
best = new
print(f'Iteration {i+1}: {best} ({fitness[best_idx]})')
return best, fitness[best_idx]
```
其中,df 是包含数据的 Pandas 数据框,target_temp 是目标温度,k1、k2、k3 是常数,n_iter 是迭代次数,n_pop 是种群大小。
最后,你可以调用灰狼优化算法,进行参数寻优:
```python
# 读取数据
df = pd.read_csv('data.csv')
# 设置目标温度和常数
target_temp = 22
k1 = 1
k2 = 1
k3 = 1
# 进行参数寻优
best, fitness = gray_wolf_optimizer(df, target_temp, k1, k2, k3, n_iter=100, n_pop=50)
print(f'Best solution: {best} ({fitness})')
```
这是一个简单的示例,你可以根据自己的需求进行修改和扩展。
阅读全文