利用决策树预测财务风险代码编写
时间: 2024-06-13 07:03:05 浏览: 93
使用决策树进行财务风险预测通常涉及几个关键步骤,包括数据预处理、特征选择、构建决策树模型、训练和评估模型。以下是用Python(如scikit-learn库)编写一个简单示例的基本流程:
```python
# 导入必要的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
# 1. 加载和预处理数据
# 假设你有一个CSV文件df包含财务数据,列包括特征(如贷款金额、信用评分等)和标签(风险等级)
data = pd.read_csv('financial_data.csv')
# 数据清洗、填充缺失值、转换为数值型数据
data = data.dropna() # 删除缺失值
data = pd.get_dummies(data, drop_first=True) # 处理分类特征
# 定义特征X和目标变量y
X = data.drop('risk', axis=1)
y = data['risk']
# 2. 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. 构建决策树模型
clf = DecisionTreeClassifier() # 默认参数,可以根据需求调整
clf.fit(X_train, y_train)
# 4. 预测并评估
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
conf_mat = confusion_matrix(y_test, y_pred)
print(f"Accuracy: {accuracy}")
print("Confusion Matrix:\n", conf_mat)
#
阅读全文