用python写一段残差网络卷积代码 尺度不变 通道数减少
时间: 2023-06-02 22:06:46 浏览: 114
好的,以下是一个简单的残差网络卷积的代码,实现尺度不变和通道数减少的效果:
```python
import torch.nn as nn
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
```
该代码中定义了一个ResBlock的类,实现了残差网络卷积的效果。该代码可以通过传入in_channels和out_channels参数来控制输入和输出的通道数,以及通过stride参数来控制卷积的步长,从而实现尺度不变的效果。
阅读全文
相关推荐















