skimage.segmentation 的mark_boundaries怎么用

时间: 2023-10-01 20:03:16 浏览: 939
`mark_boundaries` 是 `skimage.segmentation` 中的一个函数,用于在图像的边界处绘制轮廓线。它可以接受两个参数,第一个参数是原始图像,第二个参数是对应的标签图像,它们的形状应该相同。标签图像中每个像素的值表示原始图像中对应像素所属的区域编号。 下面是一个使用 `mark_boundaries` 函数的例子: ```python from skimage.segmentation import mark_boundaries from skimage.io import imread # 读入一张图像 img = imread('image.jpg') # 对图像进行分割并得到标签图像 labels = segmentation.slic(img, n_segments=100, compactness=10) # 在图像边界处绘制轮廓线 boundaries = mark_boundaries(img, labels, color=(1, 0, 0)) # 将结果显示出来 plt.imshow(boundaries) plt.show() ``` 在这个例子中,我们首先读入一张图像,并使用 SLIC 算法对其进行分割,得到标签图像。然后,使用 `mark_boundaries` 函数在图像边界处绘制轮廓线,并将结果显示出来。 需要注意的是,`mark_boundaries` 函数默认使用黑色绘制轮廓线,如果需要使用其他颜色,可以通过 `color` 参数指定。在这个例子中,我们将轮廓线的颜色设置为红色。
相关问题

from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": 'I:\\18Breakageratecalculation\\SVM run\\images\\001.jpg'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0)怎么保存超像素块

要保存超像素块,你可以在循环中将每个超像素块保存为一个单独的图像文件。例如,你可以在循环内部使用以下代码将每个超像素块保存为一个单独的文件: ```python cv2.imwrite("segment_%d.png" % i, np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) ``` 这将使用当前循环索引 i 作为文件名的一部分,将每个超像素块保存为一个名为 "segment_i.png" 的文件。

有两张大小相同的图像A和B,利用代码:from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.util import img_as_float import matplotlib.pyplot as plt import numpy as np import cv2 # args args = {"image": './1.png'} # load the image and apply SLIC and extract (approximately) # the supplied number of segments image = cv2.imread(args["image"]) segments = slic(img_as_float(image), n_segments=100, sigma=5) # show the output of SLIC fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 1, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)), segments)) plt.axis("off") plt.show() print("segments:\n", segments) print("np.unique(segments):", np.unique(segments)) # loop over the unique segment values for (i, segVal) in enumerate(np.unique(segments)): # construct a mask for the segment print("[x] inspecting segment {}, for {}".format(i, segVal)) mask = np.zeros(image.shape[:2], dtype="uint8") mask[segments == segVal] = 255 print(mask.shape) # show the masked region cv2.imshow("Mask", mask) cv2.imshow("Applied", np.multiply(image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0)) cv2.waitKey(0),对A进行超像素分割,将A划分的每个超像素块范围进行记录,应用到B上,使B直接得到超像素图像。给出pytorch实现代码

以下是使用PyTorch实现将图像B应用超像素图像A的代码: ```python import torch import numpy as np import cv2 import matplotlib.pyplot as plt from skimage.segmentation import slic, mark_boundaries from skimage.util import img_as_float # Load the images image_a_path = './image_a.png' image_b_path = './image_b.png' image_a = cv2.imread(image_a_path) image_b = cv2.imread(image_b_path) # Generate superpixels for image A segments_a = slic(img_as_float(image_a), n_segments=100, sigma=5) # Loop over the unique segment values for image A for seg_val in np.unique(segments_a): # Construct a mask for the segment mask = np.zeros(image_a.shape[:2], dtype="uint8") mask[segments_a == seg_val] = 255 # Apply the mask to image B masked_image_b = np.multiply(image_b, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # Convert the masked image to a PyTorch tensor tensor_image = torch.from_numpy(masked_image_b.astype(np.float32)).permute(2, 0, 1) / 255.0 # TODO: Apply your PyTorch model to the tensor_image # Convert the output tensor to a masked image output_image = tensor_image.permute(1, 2, 0).numpy() * 255.0 output_image = output_image.astype(np.uint8) output_image = np.multiply(output_image, cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) > 0) # Show the output image fig = plt.figure('Output') ax = fig.add_subplot(1, 1, 1) ax.imshow(output_image) plt.axis("off") plt.show() ``` 在上面的代码中,我们首先加载了图像A和图像B。然后,我们使用skimage.segmentation中的slic函数生成图像A的超像素图像。对于每个超像素块,我们构造一个掩膜并将其应用到图像B上。然后,我们将掩膜后的图像转换为PyTorch张量,并将其输入到您的PyTorch模型中。最后,我们将输出张量转换回图像格式,并将其与掩膜相乘以获得最终输出图像。
阅读全文

相关推荐

import cv2 import numpy as np import torch import torch.nn.functional as F from skimage.segmentation import slic import matplotlib.pyplot as plt from skimage.segmentation import mark_boundaries from skimage import img_as_float # 定义超像素数量 num_segments = 100 # 加载图像 A 和 B img_a = cv2.imread('img_a.jpg') img_b = cv2.imread('img_b.jpg') # 对图像 A 进行超像素分割,并获取每个超像素块的像素范围 segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5) pixel_ranges = [] for i in range(num_segments): mask = (segments_a == i) indices = np.where(mask)[1] pixel_range = (np.min(indices), np.max(indices)) pixel_ranges.append(pixel_range) # 将像素范围应用到图像 B 上实现超像素分割 segments_b = np.zeros_like(segments_a) for i in range(num_segments): pixel_range = pixel_ranges[i] segment_b = img_b[:, pixel_range[0]:pixel_range[1], :] segment_b = torch.from_numpy(segment_b.transpose(2, 0, 1)).unsqueeze(0).float() segment_b = F.interpolate(segment_b, size=(img_b.shape[0], pixel_range[1] - pixel_range[0]), mode='bilinear', align_corners=True) segment_b = segment_b.squeeze(0).numpy().transpose(1, 2, 0).astype(np.uint8) gray = cv2.cvtColor(segment_b, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY) segments_b[np.where(mask)] = i # 可视化超像素分割结果 fig = plt.figure('Superpixels') ax = fig.add_subplot(1, 2, 1) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_a, cv2.COLOR_BGR2RGB)), segments_a)) ax = fig.add_subplot(1, 2, 2) ax.imshow(mark_boundaries(img_as_float(cv2.cvtColor(img_b, cv2.COLOR_BGR2RGB)), segments_b)) plt.axis("off") plt.show(),上述代码中segments_a = slic(img_as_float(img_a), n_segments=num_segments, sigma=5)出现错误:ValueError: Cannot convert from object to float64.

import torch import torchvision.transforms as transforms import numpy as np from skimage.segmentation import slic from skimage.segmentation import mark_boundaries from skimage.filters import sobel from skimage.color import rgb2gray from PIL import Image # 超像素数量 num_segments = 100 # 加载图像 image = Image.open('test.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 转换为灰度图像 gray_img = rgb2gray(img_np) # 使用 SLIC 超像素分割算法 segments = slic(img_np, n_segments=num_segments, compactness=10, sigma=1) # 绘制超像素边界线 edge_img = mark_boundaries(img_np, segments) # 转换为灰度图像 gray_edge_img = rgb2gray(edge_img) # 使用 Canny 边缘检测算法 edges = sobel(gray_edge_img) edge_map = edges > np.mean(edges) # 绘制超像素范围的线 line_map = np.zeros_like(gray_img) for i in range(num_segments): line_map[segments == i] = edge_map[segments == i].max() # 将线绘制到图像上 line_img = np.zeros_like(img_np) line_img[:, :, 0] = line_map line_img[:, :, 1] = line_map line_img[:, :, 2] = line_map result_img = img_np * (1 - line_img) + line_img * np.array([1, 0, 0]) # 显示结果 result_img = (result_img * 255).astype(np.uint8) result_img = Image.fromarray(result_img) result_img.show()上述代码出现问题:alueError: zero-size array to reduction operation maximum which has no identity

import torch import torch.nn.functional as F from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt # 加载图像 image = Image.open('3.jpg') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=60, compactness=10) # 可视化超像素索引映射 plt.imshow(segments, cmap='gray') plt.show() # 将超像素索引映射可视化 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素索引映射可视化 segment_img.save('segment_map.jpg') # 定义超像素池化函数 def superpixel_pooling(feature_map, segments): # 获取超像素数量和特征维度 n_segments = np.unique(segments).size n_channels = feature_map.shape[0] # 初始化超像素特征 pooled_features = torch.zeros((n_segments, n_channels)) # 对每个超像素内的像素特征进行聚合 for segment_id in range(n_segments): mask = (segments == segment_id).reshape(-1, 1, 1) pooled_feature = (feature_map * mask.float()).sum(dim=(1, 2)) / mask.sum() pooled_features[segment_id] = pooled_feature return pooled_features # 进行超像素池化 pooled_features = superpixel_pooling(img_tensor, segments) # 可视化超像素特征图 plt.imshow(pooled_features.transpose(0, 1), cmap='gray') plt.show(),上述代码出现问题:AttributeError: 'numpy.ndarray' object has no attribute 'float'

最新推荐

recommend-type

教师节主题班会.pptx

教师节主题班会.pptx
recommend-type

学生网络安全教育主题班会.pptx

学生网络安全教育主题班会.pptx
recommend-type

世界环境日主题班会.pptx

世界环境日主题班会.pptx
recommend-type

GNSS 经纬度 所有国家的电子围栏

GNSS 经纬度 所有国家的电子围栏 里面包含了python的转换脚本 countries.wtk 就是转换出的围栏信息 具体的使用参见: https://blog.csdn.net/weixin_44209111/article/details/144034263?sharetype=blogdetail&sharerId=144034263&sharerefer=PC&sharesource=weixin_44209111&spm=1011.2480.3001.8118
recommend-type

JEEWEB Mybatis版本是一款基于SpringMVC+Spring+Mybatis+Mybatis Plus的JAVA WEB敏捷开发系统.zip

JEEWEB Mybatis版本是一款基于SpringMVC+Spring+Mybatis+Mybatis Plus的JAVA WEB敏捷开发系统.zip
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。