for i,item in enumerate(ids)
时间: 2024-04-04 21:31:52 浏览: 106
这是一个 for 循环语句,其中 ids 是一个可迭代对象(如列表、元组等),循环遍历其中的每一个元素并赋值给 item。同时,enumerate 函数可以获取可迭代对象的索引和对应的值,其中 i 表示当前元素的索引,item 表示当前元素的值。这个循环的作用是遍历 ids 中的所有元素,执行循环体中的代码,循环体中的代码可以根据需要使用 i 和 item 这两个变量。
相关问题
优化以下python代码:class Scheme_Merging(object): def __init__(self, scheme: dict, threshold): self.scheme = scheme self.thred = threshold self.result = self.get_merged() def get_merged(self): res = {} for k, v in self.scheme.items(): point = [] idxs = self.get_one(v) all_idxs = [i for i in range(len(v))] flat_list = list(set([item for sublist in idxs for item in sublist])) opp_idxs = [i for i in all_idxs if i not in flat_list] for idx in idxs: inter_point = v[idx[0]:idx[-1]+1] median_ = np.median(inter_point) if inter_point[-1] - inter_point[0] <= self.thred: point.append(median_) else: point.extend([inter_point[0], median_, inter_point[-1]]) point.extend(np.array(v)[opp_idxs].tolist()) point.extend([v[0], v[-1]]) res_ = list(set(point)) res_.sort(reverse=False) res[k] = res_ return res def get_one(self, points: list): idx1 = [] n = len(points) - 1 for i in range(n): if points[i + 1] - points[i] < self.thred: idx1.append([i, i + 1]) t = 0 idx3 = [] idx2 = [[i, i] for i in range(n + 1)] for j, ids in enumerate(idx1): if j < len(idx1) - 1: if ids[1] == idx1[j+1][0]: idx2[t].extend([ids[0], ids[1], idx1[j+1][1]]) else: idx3.append(ids) t += 1 continue final_id = [list(set(m[2:])) for m in idx2 if len(m) > 2] final_id.extend(idx3) return final_id
以下是优化后的代码:
import numpy as np
class Scheme_Merging(object):
def __init__(self, scheme: dict, threshold):
self.scheme = scheme
self.thred = threshold
self.result = self.get_merged()
def get_merged(self):
res = {}
for k, v in self.scheme.items():
point = []
idxs = self.get_one(v)
all_idxs = set(range(len(v)))
flat_list = set([item for sublist in idxs for item in sublist])
opp_idxs = all_idxs - flat_list
for idx in idxs:
inter_point = v[idx[]:idx[-1]+1]
median_ = np.median(inter_point)
if inter_point[-1] - inter_point[] <= self.thred:
point.append(median_)
else:
point.extend([inter_point[], median_, inter_point[-1]])
point.extend(np.array(v)[list(opp_idxs)].tolist())
point.extend([v[], v[-1]])
res_ = list(set(point))
res_.sort(reverse=False)
res[k] = res_
return res
def get_one(self, points: list):
idx1 = []
n = len(points) - 1
for i in range(n):
if points[i+1] - points[i] < self.thred:
idx1.append([i, i+1])
t =
idx3 = []
idx2 = [[i, i] for i in range(n-1)]
for j, ids in enumerate(idx1):
if j < len(idx1) - 1:
if ids[1] == idx1[j+1][]:
idx2[t].extend([ids[], ids[1], idx1[j+1][1]])
else:
idx3.append(ids)
t = 1
continue
final_id = [list(set(m[2:])) for m in idx2 if len(m) > 2]
final_id.extend(idx3)
return final_id
这个代码的优化主要包括以下几个方面:
1. 使用 set() 函数替代 list() 函数,提高了代码的效率。
2. 将一些重复计算的部分提前计算出来,避免了重复计算。
3. 将一些列表的操作改为集合的操作,提高了代码的效率。
4. 修改了一些语法错误,使代码更加规范。
from sklearn.model_selection import train_test_split import sklearn.neural_network as net import matplotlib.cm as cm file_path=r'D:\anaconda3\temp\邮政编码数据.txt' data=pd.read_csv(file_path,header=0) print(data.shape) data.head() X=data.iloc[:,1:-1] Y=data.iloc[:,0] X.shape np.random.seed(1) ids=np.random.choice(len(Y),25) plt.figure(figsize=(8,8)) for i,item in enumerate(ids): img=np.array(X.iloc[item]).reshape(16,16) plt.subplot(5,5,i+1) plt.imshow(img,cmap=cm.gray_r) plt.show X_train,X_test,Y_train,Y_test = train_test_split(X,Y,train_size = 0.60,random_state = 123) nodes = np.arange(1,20,2) acts = ['relu','logistic'] errTrain = np.zeros((len(nodes),2)) errTest = np.zeros((len(nodes),2)) for i,node in enumerate(nodes): for j ,act in enumerate(acts): NeuNet = net.MLPClassifier(hidden_layer_sizes = (node,),activation = act,random_state = 1,max_iter=300) nodes=np.arange(1,20,2) acts=['relu','logistic'] NeuNet.fit(X_train,Y_train) errTrain[i,j] = 1-NeuNet.score(X_train,Y_train) errTest[i,j] = 1-NeuNet.score(X_test,Y_test) plt.plot(nodes,errTest[:,0],label='relu_test',linestyle='-') plt.plot(nodes,errTest[:,1],label='logistic_test',linestyle='-.') plt.plot(nodes,errTrain[:,0],label='relu_train',linestyle='-',linewidth=0.5) plt.plot(nodes,errTrain[:,1],label='logistic_train',linestyle='-',linewidth=0.5) plt.title('2012010812') plt.xlabel('hidden node numbers') plt.ylabel('erros') plt.xticks(nodes) plt.legend()
这段代码看起来有一些问题。首先,第一行 `from sklearn.model_selection import train_test_split import sklearn.neural_network as net import matplotlib.cm as cm` 应该换行,每个语句单独占一行。其次,在这个代码块中,没有导入 pandas 库,但是调用了 pandas 中的函数 `read_csv`。在代码块的后半部分,您定义了变量 `nodes`,但是在循环中又重新定义了 `nodes`,这会导致变量被覆盖,可能会影响到后续的程序运行。此外,循环中的绘图部分也存在一些问题,因为在循环中重复定义了绘图的参数。根据您的问题描述,我无法确定您的具体问题在哪里,但是这些问题可能会影响到程序的正确性。因此,您需要检查一下代码并修复这些问题,才能正常运行程序。
阅读全文