在python中用遗传算法求解传教士和野人渡河问题,且能够设置野人数量,并且图形化表示

时间: 2024-02-06 15:10:26 浏览: 90
好的,我们可以使用Python中的遗传算法库DEAP(Distributed Evolutionary Algorithms in Python)来实现传教士和野人渡河问题的求解。接下来,我将分步骤介绍如何实现。 1. 安装DEAP库 首先,我们需要在Python环境中安装DEAP库。可以使用以下命令来安装: ``` pip install deap ``` 2. 定义问题 在传教士和野人渡河问题中,我们需要将3个传教士和3个野人从一岸运送到另一岸。每次运送可以只运送一人或一对人,但必须满足以下规则: - 传教士的数量不能少于野人的数量; - 在任何时候,如果一侧野人的数量超过传教士的数量,那么传教士会被吃掉。 我们可以用一个元组表示每个状态,元组中包括当前岸上的传教士数量、野人数量和船只位置(0表示在左岸,1表示在右岸)。我们需要定义以下函数来检查状态是否合法: ```python def is_valid(state): missionaries, cannibals, boat = state if missionaries < 0 or cannibals < 0 or missionaries > 3 or cannibals > 3: return False if missionaries < cannibals and missionaries > 0: return False if missionaries > cannibals and missionaries < 3: return False return True ``` 3. 定义适应度函数 适应度函数用来评价每个个体的适应度,这里我们可以将适应度定义为完成任务所需的步数。我们可以使用BFS算法来搜索从初始状态到目标状态的最短路径,然后将路径长度作为适应度。 ```python def fitness_function(individual): state = (3, 3, 0) goal = (0, 0, 1) path = [state] for i in range(len(individual)): if not is_valid(state): return 100, # Return a tuple if i % 2 == 0: state = (state[0] - individual[i], state[1] - individual[i+1], 1 - state[2]) else: state = (state[0] + individual[i], state[1] + individual[i+1], 1 - state[2]) path.append(state) if state == goal: return len(path), return 100, ``` 4. 定义遗传算法参数 接下来,我们需要定义遗传算法的参数。这里我们将使用DEAP库提供的工具箱(toolbox)来创建遗传算法所需的函数和参数。 ```python import random from deap import base, creator, tools # Set the number of individuals and generations POPULATION_SIZE = 50 MAX_GENERATIONS = 100 # Set the number of missionaries and cannibals NUM_MISSIONARIES = 3 NUM_CANNIBALS = 3 # Create the fitness function and individual class creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) # Create the toolbox toolbox = base.Toolbox() # Register the mutation and crossover operators toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutFlipBit, indpb=0.1) # Register the individual generator toolbox.register("attr_bool", random.randint, 0, 1) toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=2*(NUM_MISSIONARIES+NUM_CANNIBALS)) toolbox.register("population", tools.initRepeat, list, toolbox.individual) ``` 5. 运行遗传算法 现在我们可以开始运行遗传算法来解决传教士和野人渡河问题了。我们需要通过以下步骤来实现: - 生成初始种群; - 评价种群中每个个体的适应度; - 选择优秀的个体进行交叉和变异,生成新的子代种群; - 重复步骤2-3,直到达到最大迭代次数或找到最优解。 ```python def main(): # Initialize the population pop = toolbox.population(n=POPULATION_SIZE) for generation in range(MAX_GENERATIONS): # Evaluate the fitness of each individual fitnesses = [fitness_function(individual) for individual in pop] for individual, fitness in zip(pop, fitnesses): individual.fitness.values = fitness # Select the next generation offspring = toolbox.select(pop, len(pop)) offspring = [toolbox.clone(individual) for individual in offspring] # Apply crossover and mutation on the offspring for i in range(1, len(offspring), 2): offspring[i-1], offspring[i] = toolbox.mate(offspring[i-1], offspring[i]) del offspring[i-1].fitness.values del offspring[i].fitness.values for individual in offspring: toolbox.mutate(individual) del individual.fitness.values # Replace the current population with the offspring pop[:] = offspring # Print the best individual in the population best_individual = tools.selBest(pop, k=1)[0] print("Generation {}: Best Fitness = {}".format(generation+1, best_individual.fitness.values[0])) # If the best individual is the goal state, stop the algorithm if best_individual.fitness.values[0] == 0: break print("Best Individual: ", best_individual) ``` 6. 可视化结果 最后,我们可以使用matplotlib库来可视化每次迭代的最优适应度值。下面是一个简单的例子: ```python import matplotlib.pyplot as plt def plot_fitness_progress(fitness_progress): plt.plot(fitness_progress) plt.xlabel("Generation") plt.ylabel("Fitness") plt.show() if __name__ == "__main__": fitness_progress = [] def save_best_fitness(population, fitness): best_fitness = min([ind.fitness.values[0] for ind in population]) fitness_progress.append(best_fitness) # Add the callback function to the toolbox toolbox.decorate("mate", save_best_fitness) toolbox.decorate("mutate", save_best_fitness) # Run the algorithm main() # Plot the progress of the best fitness value plot_fitness_progress(fitness_progress) ``` 这样,我们就完成了传教士和野人渡河问题的遗传算法求解,并且可以通过matplotlib库可视化结果。
阅读全文

相关推荐

大家在看

recommend-type

先栅极还是后栅极 业界争论高K技术

随着晶体管尺寸的不断缩小,HKMG(high-k绝缘层+金属栅极)技术几乎已经成为45nm以下级别制程的必备技术.不过在制作HKMG结构晶体管的 工艺方面,业内却存在两大各自固执己见的不同阵营,分别是以IBM为代表的Gate-first(先栅极)工艺流派和以Intel为代表的Gate-last(后栅极)工艺流派,尽管两大阵营均自称只有自己的工艺才是最适合制作HKMG晶体管的技术,但一般来说使用Gate-first工艺实现HKMG结构的难点在于如何控制 PMOS管的Vt电压(门限电压);而Gate-last工艺的难点则在于工艺较复杂,芯片的管芯密度同等条件下要比Gate-first工艺低,需要设 计方积极配合修改电路设计才可以达到与Gate-first工艺相同的管芯密度级别。
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。
recommend-type

LQR与PD控制在柔性机械臂中的对比研究

LQR与PD控制在柔性机械臂中的对比研究,路恩,杨雪锋,针对单杆柔性机械臂末端位置控制的问题,本文对柔性机械臂振动主动控制中较为常见的LQR和PD方法进行了控制效果的对比研究。首先,�
recommend-type

丹麦电力电价预测 预测未来24小时的电价 pytorch + lstm + 历史特征和价格 + 时间序列

pytorch + lstm + 历史特征和价格 + 时间序列
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表

最新推荐

recommend-type

python 遗传算法求函数极值的实现代码

遗传算法是一种模拟自然选择和遗传学机制的优化方法,它在寻找函数的极值(最大值或最小值)问题上有着广泛的应用。本篇将详细解释如何使用Python实现遗传算法来求解函数的极值。 首先,我们创建一个名为`Ga`的类,...
recommend-type

详解用python实现简单的遗传算法

【Python实现简单的遗传算法】 遗传算法是一种启发式搜索方法,源于生物进化理论,它通过...在实际应用中,遗传算法常用于解决优化问题,如旅行商问题、调度问题等,其优势在于能够在复杂搜索空间中找到近似最优解。
recommend-type

Python计算不规则图形面积算法实现解析

在Python编程中,计算不规则图形的面积是一个挑战性的问题,尤其当图形包含多个闭合区域或不连续的边界时。本篇文章将深入探讨一种基于Pillow库的算法,该算法能够有效地处理这种情况并准确计算出不规则图形的面积。...
recommend-type

Python解决走迷宫问题算法示例

在Python编程中,解决走迷宫问题是一种常见的算法挑战,主要涉及到路径搜索和图遍历。本示例介绍了一种基于二维数组的深度优先遍历(DFS)算法来解决此类问题。下面将详细阐述该算法及其实现过程。 首先,我们要...
recommend-type

python射线法判断一个点在图形区域内外

Python射线法是一种判断二维平面上的点是否位于闭合图形内部的方法,它基于图形的边界线和从该点出发的任意直线(通常选择水平或垂直线)进行判断。如果这条直线与图形的边界线相交的次数为奇数,则点在图形内部;若...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"