修改代码if min(REF) < 0.1 : # 计算违反约束程度 ln.close() return 100 else : f = sum([H1,H2,H3,H4,H5,H6,H110,H120,H11,H12,H13,H14,H15,H16,H210,H220,H21,H22,H23,H24,H25,H26]) # close the link ln.close() return f

时间: 2023-08-31 18:06:33 浏览: 52
修改后的代码如下: ``` if min(REF) < 0.1: # 违反约束条件,计算违反程度 f = 100 else: # 满足约束条件,计算目标函数值 f = sum([H1,H2,H3,H4,H5,H6,H110,H120,H11,H12,H13,H14,H15,H16,H210,H220,H21,H22,H23,H24,H25,H26]) # 关闭连接 ln.close() return f ``` 修改后的代码将计算违反约束条件的代码放在了if语句中,而将计算目标函数值的代码放在了else语句中。这样可以保证在满足约束条件时进行目标函数的计算,从而避免了程序逻辑的错误。同时,无论是否违反约束条件,都会执行关闭连接的操作。
相关问题

将这段代码的逻辑反转 def get_cao_point(slot, index): """ 根据槽位和序号计算草点位置。 """ if slot < 37: return (slot - 1) * 3 + index - 1 elif slot < 42: # 槽位37-41 base = 108 if slot % 2 == 1: # 奇数槽位 index = min(index, 2) return base + (slot - 37) // 2 * 5 + index - 1 else: # 偶数槽位 return base + (slot - 37) // 2 * 5 + index + 1 elif slot < 44: # 槽位42-43 base = 120 return base + (slot - 42) * 3 + index - 1 else: # 槽位44-48 base = 126 if slot % 2 == 0: # 偶数槽位 return base + (slot - 44) // 2 * 5 + index - 1 else: # 奇数槽位 index = min(index, 2) return base + (slot - 44) // 2 * 5 + index + 1

如果要将这段代码的逻辑反转,可以考虑将每个分支的返回值先计算出来并存储到一个列表中,然后根据槽位大小来选择要返回的值。以下是反转后的代码: ```python def get_cao_point(slot, index): """ 根据槽位和序号计算草点位置。 """ values = [] # 计算所有分支的返回值 values.append((slot - 1) * 3 + index - 1) # slot < 37 values.append(None) # 37 <= slot < 42 values.append((slot - 42) * 3 + index - 1) # 42 <= slot < 44 values.append(None) # slot >= 44 if 37 <= slot < 42: base = 108 if slot % 2 == 1: index = min(index, 2) values[1] = base + (slot - 37) // 2 * 5 + index - 1 else: values[1] = base + (slot - 37) // 2 * 5 + index + 1 elif slot >= 44: base = 126 if slot % 2 == 0: values[3] = base + (slot - 44) // 2 * 5 + index - 1 else: index = min(index, 2) values[3] = base + (slot - 44) // 2 * 5 + index + 1 # 根据槽位大小选择要返回的值 if slot < 37: return values[0] elif 37 <= slot < 42: return values[1] elif 42 <= slot < 44: return values[2] else: return values[3] ``` 这段代码的逻辑变得更加复杂了,但可以实现将逻辑反转的效果。在实际使用中,应该根据实际情况来选择使用哪种实现方式。

import numpy as npfrom numpy.linalg import normdef fcm(X, c, m, error=0.0001, maxiter=1000): # 初始化隶属度矩阵 U U = np.random.rand(c, X.shape[0]) U /= np.sum(U, axis=0) # 迭代计算 for i in range(maxiter): # 计算聚类中心 centroids = U.dot(X) / U.sum(axis=1)[:, None] # 计算距离矩阵 distances = np.sqrt(((X[:, None, :] - centroids) ** 2).sum(axis=2)) # 更新隶属度矩阵 U U_new = 1 / (distances / np.expand_dims(np.min(distances, axis=2), axis=2)) ** (2 / (m - 1)) U_new /= np.sum(U_new, axis=0) # 判断收敛 if norm(U_new - U) < error: break U = U_new # 返回聚类结果 return centroids, U.argmax(axis=0)# 示例数据X = np.random.rand(100, 2)# 聚类数目c = 3# 模糊指数m = 2# 聚类centroids, labels = fcm(X, c, m)# 打印聚类中心和标签print('Centroids:', centroids)print('Labels:', labels)优化这段代码

这段代码本身已经比较简洁和高效了,但还是有一些可以优化的地方: 1. 在计算距离矩阵时,可以使用numpy的广播功能来避免使用np.expand_dims函数: ``` distances = np.sqrt(((X[:, None, :] - centroids) ** 2).sum(axis=2)) ``` 2. 在计算U_new时,可以将np.expand_dims函数替换为np.newaxis: ``` U_new = 1 / (distances / np.min(distances, axis=2)[:, np.newaxis]) ** (2 / (m - 1)) ``` 3. 可以使用numpy的einsum函数进一步优化计算距离矩阵的过程: ``` distances = np.sqrt(np.einsum('ijk->ij', (X[:, np.newaxis, :] - centroids) ** 2)) ``` 4. 可以将一些常数值(如2和1)提前计算并存储,避免重复计算: ``` c1 = 2 / (m - 1) c2 = 1 / (m - 1) U_new = 1 / (distances / np.min(distances, axis=2)[:, np.newaxis]) ** c1 ``` 综上,以下是优化后的代码: ``` import numpy as np from numpy.linalg import norm def fcm(X, c, m, error=0.0001, maxiter=1000): # 初始化隶属度矩阵 U U = np.random.rand(c, X.shape[0]) U /= np.sum(U, axis=0) # 计算常数值 c1 = 2 / (m - 1) c2 = 1 / (m - 1) # 迭代计算 for i in range(maxiter): # 计算聚类中心 centroids = U.dot(X) / U.sum(axis=1)[:, None] # 计算距离矩阵 distances = np.sqrt(np.einsum('ijk->ij', (X[:, np.newaxis, :] - centroids) ** 2)) # 更新隶属度矩阵 U U_new = 1 / (distances / np.min(distances, axis=2)[:, np.newaxis]) ** c1 U_new /= np.sum(U_new, axis=0) # 判断收敛 if norm(U_new - U) < error: break U = U_new # 返回聚类结果 return centroids, U.argmax(axis=0) # 示例数据 X = np.random.rand(100, 2) # 聚类数目 c = 3 # 模糊指数 m = 2 # 聚类 centroids, labels = fcm(X, c, m) # 打印聚类中心和标签 print('Centroids:', centroids) print('Labels:', labels) ```

相关推荐

from osgeo import gdal import numpy as np class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改可以)依据共线方程将地面点(X,Y,Z)反算其在原始航 片中的像素值行列号( r,c),当 img1 该位置像素值为 0 值,修改其像素值为 255,当 img1 该( r,c) 位置像素值为 255 时,说明此点已被占用,则对地面点(X,Y,Z)标记此点位被遮蔽。

class SVDRecommender: def __init__(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if self.which == 'LM': largest = True elif self.which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) #获得隐式定义的格拉米矩阵的低秩近似。 eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) #格拉米矩阵有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复数检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #获得一个指示哪些本征对不是简并微小的掩码, #并为阈值奇异值创建一个重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T) 将上述代码修改为使用LM,迭代器使用arpack

import matplotlib.pyplot as plt import math import random import numpy as np pop_size = 50 # 种群数量 PC=0.6 # 交叉概率 PM=0.1 #变异概率 X_max=10 #最大值 X_min=0 #最小值 DNA_SIZE=10 #DNA长度与保留位数有关,2**10 当前保留3位小数点 N_GENERATIONS=100 """ 求解的目标表达式为: y = 10 * math.sin(5 * x) + 7 * math.cos(4 * x) x=[0,5] """ def aim(x):return 10*x#np.sin(5*x)+7*np.cos(4*x) def f1(pop): return pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) *(X_max-X_min)/ float(2**DNA_SIZE-1) +X_min def f2(pred): return pred + 1e-3 - np.min(pred) def f3(pop, fitness): idx = np.random.choice(np.arange(pop_size), size=pop_size, replace=True,p=fitness/fitness.sum()) return pop[idx] def f4(parent, pop): if np.random.rand() < PC: i_ = np.random.randint(0, pop_size, size=1) cross_points = np.random.randint(0, 2, size=DNA_SIZE).astype(np.bool) parent[cross_points] = pop[i_, cross_points] return parent def f5(child,pm): for point in range(DNA_SIZE): if np.random.rand() < pm: child[point] = 1 if child[point] == 0 else 0 return child pop = np.random.randint(2, size=(pop_size, DNA_SIZE)) for i in range(N_GENERATIONS): #解码 X_value= ? #获取目标函数值 F_values = ? #获取适应值 fitness = ? if(i==0): max=np.max(F_values) max_DNA = pop[np.argmax(F_values), :] if(max<np.max(F_values)): max=np.max(F_values) max_DNA=pop[np.argmax(F_values), :] if (i % 10 == 0): print("Most fitted value and X: \n", np.max(F_values), decode(pop[np.argmax(F_values), :])) #选择 pop = ? pop_copy = pop.copy() #交叉 变异 for parent in pop: child = ? child = ? parent[:] = child print("目标函数最大值为:",max) print("其DNA值为:",max_DNA) print("其X值为:",decode(max_DNA))

最新推荐

recommend-type

起点小说解锁.js

起点小说解锁.js
recommend-type

299-煤炭大数据智能分析解决方案.pptx

299-煤炭大数据智能分析解决方案.pptx
recommend-type

299-教育行业信息化与数据平台建设分享.pptx

299-教育行业信息化与数据平台建设分享.pptx
recommend-type

基于Springboot+Vue酒店客房入住管理系统-毕业源码案例设计.zip

网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。系统化是必要的,设计网上系统不仅会节约人力和管理成本,还会安全保存庞大的数据量,对于信息的维护和检索也不需要花费很多时间,非常的便利。 网上系统是在MySQL中建立数据表保存信息,运用SpringBoot框架和Java语言编写。并按照软件设计开发流程进行设计实现。系统具备友好性且功能完善。 网上系统在让售信息规范化的同时,也能及时通过数据输入的有效性规则检测出错误数据,让数据的录入达到准确性的目的,进而提升数据的可靠性,让系统数据的错误率降至最低。 关键词:vue;MySQL;SpringBoot框架 【引流】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依