请用python语言实现
时间: 2023-07-18 12:27:34 浏览: 90
以下是一个简单的基于Python语言实现的双向RRT路径规划算法:
```python
import random
import math
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
class RRT:
def __init__(self, start, goal, obstacles):
self.start = start
self.goal = goal
self.obstacles = obstacles
self.nodes_start = []
self.nodes_goal = []
self.max_iter = 1000
self.step_size = 10
self.goal_sample_rate = 0.1
self.connect_distance = 20
def generate_random_node(self):
if random.random() > self.goal_sample_rate:
x = random.randint(0, 800)
y = random.randint(0, 800)
return Node(x, y)
else:
return self.goal
def get_nearest_node(self, nodes, node):
min_distance = float('inf')
nearest_node = None
for n in nodes:
distance = math.sqrt((n.x - node.x) ** 2 + (n.y - node.y) ** 2)
if distance < min_distance:
min_distance = distance
nearest_node = n
return nearest_node
def is_collision_free(self, n1, n2):
for o in self.obstacles:
if math.sqrt((n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2) <= o.radius:
return False
return True
def connect(self, nodes, node):
nearest_node = self.get_nearest_node(nodes, node)
dx = node.x - nearest_node.x
dy = node.y - nearest_node.y
distance = math.sqrt(dx ** 2 + dy ** 2)
if distance > self.step_size:
new_x = nearest_node.x + (dx / distance) * self.step_size
new_y = nearest_node.y + (dy / distance) * self.step_size
new_node = Node(new_x, new_y)
else:
new_node = node
if self.is_collision_free(nearest_node, new_node):
nodes.append(new_node)
return True
else:
return False
def plan(self):
self.nodes_start.append(self.start)
self.nodes_goal.append(self.goal)
for i in range(self.max_iter):
q_rand = self.generate_random_node()
if i % 2 == 0:
if self.connect(self.nodes_start, q_rand):
for j in range(len(self.nodes_goal)):
if math.sqrt((self.nodes_start[-1].x - self.nodes_goal[j].x) ** 2 + (self.nodes_start[-1].y - self.nodes_goal[j].y) ** 2) < self.connect_distance:
return self.nodes_start + self.nodes_goal[j::-1]
else:
if self.connect(self.nodes_goal, q_rand):
for j in range(len(self.nodes_start)):
if math.sqrt((self.nodes_goal[-1].x - self.nodes_start[j].x) ** 2 + (self.nodes_goal[-1].y - self.nodes_start[j].y) ** 2) < self.connect_distance:
return self.nodes_start[j::-1] + self.nodes_goal
return None
```
在这个实现中,我们定义了一个`Node`类来表示RRT树的节点,然后定义了一个`RRT`类来表示双向RRT路径规划算法。在`RRT`类中,我们定义了一些参数,如起点、终点、障碍物等,并且实现了一些方法,如节点的扩展、最近节点的查找、路径的检查等。
在`plan`方法中,我们对起点和终点分别构建RRT树,然后不断地扩展节点并连接路径,直到找到一条连接起点和终点的路径或达到最大迭代次数。如果找到了可行路径,就返回该路径上的所有节点;否则返回None。
虽然这个实现比较简单,但是可以作为基础代码来进一步扩展和优化。
阅读全文
相关推荐















