jupter求解excel多元二次非线性回归模型
时间: 2023-12-02 13:06:30 浏览: 157
对于多元二次非线性回归模型的求解,可以使用Jupyter Notebook中的Python库来进行分析。下面是一个简单的示例代码,使用pandas和numpy库进行数据处理和拟合,以及matplotlib库进行结果可视化。
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 读取Excel数据
data = pd.read_excel('your_data.xlsx')
# 提取自变量和因变量
x1 = data['x1']
x2 = data['x2']
y = data['y']
# 构建特征矩阵
X = pd.DataFrame({'x1': x1, 'x2': x2, 'x1^2': x1**2, 'x2^2': x2**2, 'x1*x2': x1*x2})
# 添加常数项
X = sm.add_constant(X)
# 拟合模型
model = sm.OLS(y, X)
results = model.fit()
# 输出回归结果
print(results.summary())
# 绘制预测值与实际值的散点图
y_pred = results.predict(X)
plt.scatter(y, y_pred)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.show()
```
请注意,上述代码中的"your_data.xlsx"应替换为您的Excel数据文件路径。另外,您还需要安装所需的库(pandas、numpy、statsmodels、matplotlib)。
希望这可以帮到您!如果您有任何其他问题,请随时提问。
阅读全文
相关推荐

















