import os.path import random import time from multiprocessing import Pool import requests from lxml import etree headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36' } def get_img_src(page): ''' 抓取页面的图片的src :return: ''' for i in range(1, page+1): url = f'https://www.pkdoutu.com/photo/list/?page={i}' print(f'抓取{url}页数据') res = requests.get(url, headers=headers) res.encoding = res.apparent_encoding tree = etree.HTML(res.text) # 抓取图片 img_list = tree.xpath('//img[@referrerpolicy="no-referrer"]/@data-original') yield img_list def download_img(url): ''' 下载图片 :return: ''' time.sleep(random.uniform(0, 1)) img_res = requests.get(url, headers=headers) img_name = url.split('_')[-1] # 通过图片url进行拆分,拿到图片名称和后缀 path = 'img' # 判断路径是否存在,不存在则创建 if not os.path.exists(path): os.mkdir(path) # 写入到文件中 with open(os.path.join(path, img_name), 'wb') as f: f.write(img_res.content) if __name__ == '__main__': pool = Pool() # 通过生成器get_img_src返回图片列表 for url_list in get_img_src(2): for url in url_list: # 循环加入进程池 pool.apply_async(download_img, args=(url, )) pool.close() pool.join() print('over')

时间: 2024-04-25 10:27:17 浏览: 152
这是一个 Python 程序,主要用于从指定网站上抓取图片并下载到本地。程序使用了 multiprocessing 库中的进程池来实现多进程下载,加快了下载速度。其中,get_img_src 函数用于抓取指定页数的图片链接,download_img 函数用于下载指定链接的图片并保存到本地。主函数中使用了进程池来异步下载所有图片。 程序的具体实现步骤如下: 1. 导入所需的库,包括 os.path、random、time、multiprocessing 和 requests。 2. 定义抓取图片链接的函数 get_img_src,通过循环抓取指定页数的页面,并使用 lxml 库解析页面内容,抓取图片链接并返回。 3. 定义下载图片的函数 download_img,通过 requests 库下载指定链接的图片,并将图片保存到本地。 4. 在主函数中使用进程池来异步下载所有图片,具体实现如下: a. 创建进程池 pool。 b. 通过生成器 get_img_src 返回图片链接列表,循环遍历每个链接。 c. 将 download_img 函数加入进程池,并传入图片链接作为参数。 d. 关闭进程池,并等待所有进程完成。 e. 打印下载完成提示信息。 该程序适用于需要大量下载图片的场景,可以通过调整进程池的大小和抓取的页数来适应不同的需求。
相关问题

优化这段代码:import requests import pandas as pd from bs4 import BeautifulSoup from lxml import etree import time import pymysql from sqlalchemy import create_engine from urllib.parse import urlencode # 编码 URL 字符串 start_time = time.time() #计算程序运行时间 def get_one_page(i): try: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36' } paras = {'reportTime': '2023-03-23', #可以改报告日期,比如2018-6-30获得的就是该季度的信息 'pageNum': i #页码 } url = 'http://s.askci.com/stock/a/?' + urlencode(paras) response = requests.get(url,headers = headers) if response.status_code == 200: return response.text return None except RequestException: print('爬取失败') def parse_one_page(html): soup = BeautifulSoup(html,'lxml') content = soup.select('#myTable04')[0] #[0]将返回的list改为bs4类型 tbl = pd.read_html(content.prettify(),header = 0)[0] # prettify()优化代码,[0]从pd.read_html返回的list中提取出DataFrame tbl.rename(columns = {'序号':'serial_number', '股票代码':'stock_code', '股票简称':'stock_abbre', '公司名称':'company_name', '省份':'province', '城市':'city', '主营业务收入(201712)':'main_bussiness_income', '净利润(201712)':'net_profit', '员工人数':'employees', '上市日期':'listing_date', '招股书':'zhaogushu', '公司财报':'financial_report', '行业分类':'industry_classification', '产品类型':'industry_type', '主营业务':'main_business'},inplace = True) return tbl def generate_mysql(): conn = pymysql.connect( host='localhost', user='root', password='******', port=3306, charset = 'utf8', db = 'wade') cursor = conn.cursor() sql = 'CREATE TABLE IF NOT EXISTS listed_company (serial_number INT(20) NOT NULL,stock_code INT(20) ,stock_abbre VARCHAR(20) ,company_name VARCHAR(20) ,province VARCHAR(20) ,city VARCHAR(20) ,main_bussiness_income VARCHAR(20) ,net_profit VARCHAR(20) ,employees INT(20) ,listing_date DATETIME(0) ,zhaogushu VARCHAR(20) ,financial_report VARCHAR(20) , industry_classification VARCHAR(20) ,industry_type VARCHAR(100) ,main_business VARCHAR(200) ,PRIMARY KEY (serial_number))' cursor.execute(sql) conn.close() def write_to_sql(tbl, db = 'wade'): engine = create_engine('mysql+pymysql://root:******@localhost:3306/{0}?charset=utf8'.format(db)) try: tbl.to_sql('listed_company2',con = engine,if_exists='append',index=False) # append表示在原有表基础上增加,但该表要有表头 except Exception as e: print(e) def main(page): generate_mysql() for i in range(1,page): html = get_one_page(i) tbl = parse_one_page(html) write_to_sql(tbl) # # 单进程 if __name__ == '__main__': main(178) endtime = time.time()-start_time print('程序运行了%.2f秒' %endtime) # 多进程 from multiprocessing import Pool if __name__ == '__main__': pool = Pool(4) pool.map(main, [i for i in range(1,178)]) #共有178页 emdtime = time.time()-start_time print('程序运行了%.2f秒' %(time.time()-start_time))

这段代码已经很简洁了,但是可以通过以下方式进行优化: 1. 导入模块时可以将相同的模块放在一起,如将requests和pandas放在一起,将BeautifulSoup和lxml放在一起。 2. 导入模块时可以只导入需要的部分,如只导入urlencode函数。 3. 可以将函数或代码段封装成函数或类,使代码结构更清晰。
阅读全文

相关推荐

最新推荐

recommend-type

(179722824)三相异步电机矢量控制仿真模型

三相异步电机矢量控制仿真模型。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

一次并发导致错误分析与总结

一次并发导致错误分析
recommend-type

025 - 快手直播词和控场话术.docx

025 - 快手直播词和控场话术
recommend-type

第4章 管理信息库2024v2.pdf

第4章 管理信息库2024v2
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依