使用tensorflow对resnet50提取的cifar10数据集进行降维到128维的python代码
时间: 2024-05-08 21:16:11 浏览: 181
Font Awesome图标字体库提供可缩放矢量图标,它可以被定制大小、颜色、阴影以及任何可以用CSS的样式
以下是使用TensorFlow对ResNet50提取的CIFAR10数据集进行降维到128维的Python代码:
```
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.layers import GlobalAveragePooling2D
# Load CIFAR10 dataset
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# Preprocess input data
x_train = tf.keras.applications.resnet50.preprocess_input(x_train)
x_test = tf.keras.applications.resnet50.preprocess_input(x_test)
# Load ResNet50 model without top layers
base_model = ResNet50(weights='imagenet', include_top=False)
# Add global average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# Create new model
model = Model(inputs=base_model.input, outputs=x)
# Extract features from CIFAR10 dataset
features_train = model.predict(x_train)
features_test = model.predict(x_test)
# Perform PCA to reduce features to 128 dimensions
from sklearn.decomposition import PCA
pca = PCA(n_components=128)
pca.fit(features_train)
features_train_pca = pca.transform(features_train)
features_test_pca = pca.transform(features_test)
```
首先,导入需要的模块和数据集。然后,对输入数据进行预处理。接下来,加载ResNet50模型并添加全局平均池化层。然后,创建新的模型并使用它来从CIFAR10数据集中提取特征。最后,使用PCA将特征降维到128维。
阅读全文