用C++模拟实现动态分区存储管理,要求: 分区分配算法至少实现首次适应算法、最佳适应算法和最坏适应算法中的至少一种。熟悉并掌握各种算法的空闲区组织方式。 分区的初始化——可以由用户输入初始分区的大小。(初始化后只有一个空闲分区,起始地址为0,大小是用户输入的大小) 分区的动态分配过程:由用户输入作业号和作业的大小,实现分区过程。 分区的回收:用户输入作业号,实现分区回收,同时,分区的合并要体现出来。(注意:不存在的作业号要给出错误提示!) 分区的显示:任何时刻,可以查看当前内存的情况(起始地址是什么,大小多大的分区时空闲的,或者占用的,能够显示出来) 要求考虑:(1)内存空间不足的情况,要有相应的显示; (2)作业不能同名,但是删除后可以再用这个名字; (3)作业空间回收是输入作业名,回收相应的空间,如果这个作业名不存在,也要有相应的提示。

时间: 2024-02-13 12:04:01 浏览: 105
ZIP

基于 c++实现 内存管理 - 动态分区分配方式模拟 代码详解教程

star5星 · 资源好评率100%
以下是一个用C++实现动态分区存储管理的示例代码,实现了首次适应算法、最佳适应算法和最坏适应算法,以及分区的初始化、动态分配、回收和显示功能。 ```c++ #include <iostream> #include <vector> #include <algorithm> using namespace std; // 分区结构体 struct Partition { int start_addr; // 起始地址 int size; // 大小 bool free; // 是否空闲 string job; // 作业名 }; // 分区表 vector<Partition> partitions; // 初始化分区 void init_partitions(int size) { partitions.clear(); Partition p = {0, size, true, ""}; partitions.push_back(p); } // 首次适应算法 int first_fit(int size) { for (int i = 0; i < partitions.size(); i++) { if (partitions[i].free && partitions[i].size >= size) { return i; } } return -1; } // 最佳适应算法 int best_fit(int size) { int best_idx = -1; int min_size = INT_MAX; for (int i = 0; i < partitions.size(); i++) { if (partitions[i].free && partitions[i].size >= size && partitions[i].size < min_size) { best_idx = i; min_size = partitions[i].size; } } return best_idx; } // 最坏适应算法 int worst_fit(int size) { int worst_idx = -1; int max_size = -1; for (int i = 0; i < partitions.size(); i++) { if (partitions[i].free && partitions[i].size >= size && partitions[i].size > max_size) { worst_idx = i; max_size = partitions[i].size; } } return worst_idx; } // 分配空间 void allocate(string job, int size, int algorithm) { int idx; switch (algorithm) { case 1: idx = first_fit(size); break; case 2: idx = best_fit(size); break; case 3: idx = worst_fit(size); break; default: cout << "Invalid algorithm" << endl; return; } if (idx == -1) { cout << "Memory allocation failed for job " << job << endl; return; } partitions[idx].free = false; partitions[idx].job = job; // 如果分区大小大于作业大小,需要将剩余空间插入到分区表中 if (partitions[idx].size > size) { Partition p = {partitions[idx].start_addr + size, partitions[idx].size - size, true, ""}; partitions.insert(partitions.begin() + idx + 1, p); partitions[idx].size = size; } cout << "Job " << job << " allocated " << size << " bytes starting from memory location " << partitions[idx].start_addr << endl; } // 回收空间 void deallocate(string job) { bool found = false; for (int i = 0; i < partitions.size(); i++) { if (partitions[i].job == job) { partitions[i].free = true; partitions[i].job = ""; // 如果前后分区都是空闲的,需要将它们合并 if (i > 0 && partitions[i - 1].free) { partitions[i - 1].size += partitions[i].size; partitions.erase(partitions.begin() + i); i--; } if (i < partitions.size() - 1 && partitions[i + 1].free) { partitions[i].size += partitions[i + 1].size; partitions.erase(partitions.begin() + i + 1); } found = true; cout << "Job " << job << " deallocated from memory starting from location " << partitions[i].start_addr << endl; break; } } if (!found) { cout << "Job " << job << " not found" << endl; } } // 显示分区情况 void show_partitions() { cout << "========================================" << endl; cout << "Start address\tSize\tFree\tJob" << endl; cout << "========================================" << endl; for (int i = 0; i < partitions.size(); i++) { cout << partitions[i].start_addr << "\t\t" << partitions[i].size << "\t" << partitions[i].free << "\t" << partitions[i].job << endl; } cout << "========================================" << endl; } int main() { int size; cout << "Enter initial size of partition: "; cin >> size; init_partitions(size); while (true) { int choice, algorithm; string job; int size; cout << "1. Allocate memory" << endl; cout << "2. Deallocate memory" << endl; cout << "3. Show partitions" << endl; cout << "4. Exit" << endl; cout << "Enter your choice: "; cin >> choice; switch (choice) { case 1: cout << "Enter job name: "; cin >> job; cout << "Enter job size: "; cin >> size; cout << "Enter allocation algorithm (1 for first fit, 2 for best fit, 3 for worst fit): "; cin >> algorithm; allocate(job, size, algorithm); break; case 2: cout << "Enter job name: "; cin >> job; deallocate(job); break; case 3: show_partitions(); break; case 4: return 0; default: cout << "Invalid choice" << endl; } } return 0; } ``` 这段代码实现了一个简单的动态分区存储管理。`Partition` 结构体表示一个分区的信息,包括起始地址、大小、是否空闲和作业名。`partitions` 向量表示所有分区的分区表。 `init_partitions` 函数初始化分区表,只有一个空闲分区,起始地址为0,大小是用户输入的大小。`first_fit`、`best_fit` 和 `worst_fit` 函数分别实现了首次适应算法、最佳适应算法和最坏适应算法,返回满足要求的分区的下标。 `allocate` 函数根据用户输入的作业名和大小以及分配算法分配空间。根据算法在分区表中找到满足要求的空闲分区,将其标记为占用,并更新作业名。如果分区大小大于作业大小,则需要将剩余空间插入到分区表中。 `deallocate` 函数根据用户输入的作业名回收空间。在分区表中找到对应的分区,将其标记为空闲,并更新作业名。如果前后分区都是空闲的,需要将它们合并。 `show_partitions` 函数打印当前分区情况。在控制台输出分区表的每一行。 在 `main` 函数中,我们首先根据用户输入的大小初始化分区表。然后进入一个循环,根据用户的选择进行分配、回收、显示或退出操作。
阅读全文

相关推荐

最新推荐

recommend-type

操作系统实验三——动态分区分配方式的模拟

本次实验的目的是让学生深入理解存储器管理机制,特别是动态分区分配的方法,包括首次适应算法和最佳适应算法,并通过编程实践来加深理解。 动态分区分配是针对内存资源的一种灵活分配策略,它允许内存空间根据进程...
recommend-type

操作系统 动态分区存储管理方式的主存分配回收实验报告

总的来说,这个实验报告详细地介绍了操作系统中动态分区存储管理的实现,包括数据结构的设计、最优适应算法的应用以及内存分配和回收的具体操作。这对于学习操作系统课程的学生来说,是一个很好的理论与实践结合的...
recommend-type

算法排序实验报告 包括对五种排序算法的算法实现时间的比较

在报告中,作者通过C++编程实现了这些算法,并进行了实际的性能比较,特别是在处理不同规模(N=1000, 10000, 100000)的数据时所需的时间。以下是对这五种排序算法的详细解释: 1. **冒泡排序(Bubble Sort)**:这...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自