def demo(): n = eval(input('请输入:')) i=1 x=0 if i<=n: x=x+i i=i+1 print(x) demo() 为什么不可以实现从1到输入的n的累加
时间: 2024-05-08 21:20:22 浏览: 171
这段代码有一些语法错误,应该是这样的:
```
def demo():
n = eval(input('请输入:'))
i = 1
x = 0
while i <= n:
x = x + i
i = i + 1
print(x)
demo()
```
该代码可以实现从1到输入的n的累加。但是在原始的代码中,由于`i`的值没有发生变化,所以循环会一直执行下去,导致程序出现死循环。同时,`x=x i`这一行代码也有语法错误,应该是`x = x + i`。
相关问题
给我提供一个pytorch的tsne代码和demo
以下是一个pytorch的tsne代码和demo:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
class Net(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.fc1(x)
x = self.relu1(x)
x = self.fc2(x)
return x
def tsne_visualization(x, y):
tsne = TSNE(n_components=2, random_state=0)
x_tsne = tsne.fit_transform(x)
plt.figure(figsize=(10, 10))
plt.scatter(x_tsne[:, 0], x_tsne[:, 1], c=y, cmap=plt.cm.get_cmap('jet', 10))
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)
plt.show()
if __name__ == '__main__':
input_size = 784
hidden_size = 32
output_size = 10
# Load MNIST dataset
train_data = torch.load('mnist.pth')
x_train, y_train = train_data['x'], train_data['y']
# Define model
model = Net(input_size, hidden_size, output_size)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train model
for epoch in range(10):
running_loss = 0.0
for i in range(len(x_train)):
# Forward
outputs = model(x_train[i])
loss = criterion(outputs.unsqueeze(0), y_train[i].unsqueeze(0))
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d], Loss: %.4f' % (epoch+1, running_loss/len(x_train)))
# Test model
x_test, y_test = train_data['x_test'], train_data['y_test']
with torch.no_grad():
model.eval()
outputs = model(x_test)
_, predicted = torch.max(outputs, 1)
# Visualize t-SNE
tsne_visualization(x_test, y_test)
```
在上述代码中,首先定义了一个简单的全连接神经网络模型,然后使用MNIST数据集进行训练和测试。在测试过程中,使用sklearn中的t-SNE算法进行降维,将高维数据可视化为二维散点图。
注意:这里的MNIST数据集文件“mnist.pth”是预处理好的数据集,包含了训练集和测试集的图片和标签,可以通过以下代码生成:
```python
from torchvision import datasets, transforms
import torch
# Load MNIST dataset
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
x_train = train_dataset.data.view(len(train_dataset), -1).float()
y_train = train_dataset.targets
x_test = test_dataset.data.view(len(test_dataset), -1).float()
y_test = test_dataset.targets
# Save data to file
train_data = {'x': x_train, 'y': y_train, 'x_test': x_test, 'y_test': y_test}
torch.save(train_data, 'mnist.pth')
```
django部署yolov5训练的模型,请给出view.py、models.py和前端页面
由于您没有提供具体的部署环境,我将提供一个基于Python Django框架和HTML/CSS/JS前端的yolov5模型部署示例。如果您的部署环境不同,请根据具体情况进行相应的调整。
1. 在Django项目中创建一个名为`models.py`的文件,用于加载yolov5模型并进行预测。
```python
import torch
import cv2
import numpy as np
from django.conf import settings
class YOLOv5:
def __init__(self):
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(self.device)
self.model.eval()
def predict(self, image_path):
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = self.model([img], size=640)
predictions = results.xyxy[0].cpu().numpy().tolist()
return predictions
```
2. 在Django项目中创建一个名为`views.py`的文件,用于处理用户请求并调用`models.py`中的模型进行预测。
```python
from django.shortcuts import render
from django.conf import settings
from .models import YOLOv5
import os
def index(request):
if request.method == 'POST':
# 从HTML表单中获取上传的图像文件
image_file = request.FILES.get('image')
# 将图像文件保存到本地
image_path = os.path.join(settings.MEDIA_ROOT, image_file.name)
with open(image_path, 'wb') as f:
f.write(image_file.read())
# 加载yolov5模型并进行预测
model = YOLOv5()
predictions = model.predict(image_path)
# 将预测结果传递给HTML模板
context = {'predictions': predictions}
return render(request, 'result.html', context)
else:
return render(request, 'index.html')
```
3. 在Django项目中创建一个名为`index.html`的HTML模板,用于显示上传图像的表单。
```html
<!DOCTYPE html>
<html>
<head>
<title>Django YOLOv5 Demo</title>
</head>
<body>
<h1>Django YOLOv5 Demo</h1>
<form method="POST" enctype="multipart/form-data">
{% csrf_token %}
<input type="file" name="image">
<button type="submit">预测</button>
</form>
</body>
</html>
```
4. 在Django项目中创建一个名为`result.html`的HTML模板,用于显示预测结果。
```html
<!DOCTYPE html>
<html>
<head>
<title>Django YOLOv5 Demo</title>
</head>
<body>
<h1>Django YOLOv5 Demo</h1>
<table>
<thead>
<tr>
<th>类别</th>
<th>置信度</th>
<th>左上角坐标</th>
<th>右下角坐标</th>
</tr>
</thead>
<tbody>
{% for prediction in predictions %}
<tr>
<td>{{ prediction.5 }}</td>
<td>{{ prediction.4 }}</td>
<td>{{ prediction.0 }}, {{ prediction.1 }}</td>
<td>{{ prediction.2 }}, {{ prediction.3 }}</td>
</tr>
{% endfor %}
</tbody>
</table>
</body>
</html>
```
5. 在Django项目中的`settings.py`文件中添加以下配置,指定上传文件的存储路径。
```python
MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
MEDIA_URL = '/media/'
```
6. 运行Django项目并访问`http://localhost:8000`,上传一张图像并查看预测结果。
阅读全文