gan生成eeg数据程序python,切输出训练完的样本
时间: 2024-05-16 09:13:40 浏览: 109
gan简单代码实现python
以下是一个简单的GAN生成EEG数据的Python程序。
```python
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
# 超参数
latent_dim = 100 # 潜在空间维度
num_epochs = 10000 # 训练次数
batch_size = 128 # 批次大小
# 加载数据集
# ...
# GAN模型
generator = tf.keras.Sequential(
[
layers.Dense(256, input_dim=latent_dim, activation=tf.nn.relu),
layers.Dense(512, activation=tf.nn.relu),
layers.Dense(1024, activation=tf.nn.relu),
layers.Dense(23*100, activation=tf.nn.tanh),
layers.Reshape((23, 100)),
]
)
discriminator = tf.keras.Sequential(
[
layers.Reshape((23*100,), input_shape=(23, 100)),
layers.Dense(512, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(1, activation=tf.nn.sigmoid),
]
)
gan = tf.keras.Sequential([generator, discriminator])
# 编译模型
generator.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5))
discriminator.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5))
gan.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5))
# 训练模型
for epoch in range(num_epochs):
# 训练判别器
noise = np.random.normal(0, 1, (batch_size, latent_dim))
generated_data = generator.predict(noise)
real_data = # 从数据集中随机选择真实数据
x = np.concatenate((generated_data, real_data))
y = np.concatenate((np.zeros((batch_size, 1)), np.ones((batch_size, 1))))
d_loss = discriminator.train_on_batch(x, y)
# 训练生成器
noise = np.random.normal(0, 1, (batch_size, latent_dim))
y = np.ones((batch_size, 1))
g_loss = gan.train_on_batch(noise, y)
# 输出损失
if epoch % 100 == 0:
print(f"Epoch: {epoch}, Discriminator Loss: {d_loss}, Generator Loss: {g_loss}")
# 生成样本
num_samples = 10
noise = np.random.normal(0, 1, (num_samples, latent_dim))
generated_data = generator.predict(noise)
# 输出样本
for i in range(num_samples):
plt.plot(generated_data[i])
plt.show()
```
请注意,此代码只是一个简单的示例,可以根据您的特定需求进行修改。另外,生成EEG数据是一个非常具有挑战性的任务,因此生成的数据可能不会像真实的EEG数据一样精确。
阅读全文