# joint_limits.yaml allows the dynamics properties specified in the URDF to be overwritten or augmented as needed # Specific joint properties can be changed with the keys [max_position, min_position, max_velocity, max_acceleration] # Joint limits can be turned off with [has_velocity_limits, has_acceleration_limits] joint_limits: joint_1: has_velocity_limits: true max_velocity: 0.9 #1.032 has_acceleration_limits: true max_acceleration: 1 joint_2: has_velocity_limits: true max_velocity: 0.4 #0.452 has_acceleration_limits: true max_acceleration: 1 joint_3: has_velocity_limits: true max_velocity: 0.5 #0.618 has_acceleration_limits: true max_acceleration: 1 joint_4: has_velocity_limits: true max_velocity: 0.4 #0.494 has_acceleration_limits: true max_acceleration: 1 joint_5: has_velocity_limits: true max_velocity: 0.4 #0.494 has_acceleration_limits: true max_acceleration: 1 joint_6: has_velocity_limits: true max_velocity: 1.2 #1.344 has_acceleration_limits: true max_acceleration: 1

时间: 2023-06-26 17:05:51 浏览: 54
这是一个 YAML 格式的文件,用于指定 URDF 中关节的动力学属性,并允许对其进行修改或增强。具体来说,可以使用 [max_position, min_position, max_velocity, max_acceleration] 这些关键字来更改特定关节的属性。也可以使用 [has_velocity_limits, has_acceleration_limits] 这些关键字来关闭关节限制。在这个文件中,定义了六个关节(joint_1 到 joint_6),每个关节都有最大速度和最大加速度的限制。这些限制可以根据需要进行修改。
相关问题

global_planner_params.yaml参考文件

# Global Planner Parameters # maximum distance to the goal point goal_distance_tolerance: 0.1 # maximum allowed numerical error for goal position xy_goal_tolerance: 0.2 # maximum allowed numerical error for goal orientation yaw_goal_tolerance: 0.3 # weight for the heuristic function used in the A* algorithm # higher values prefer straighter paths, lower values prefer paths with less turning heuristic_weight: 3.0 # minimum distance to travel before attempting to replan min_replan_distance: 1.0 # minimum amount of time to wait before attempting to replan min_replan_time: 1.0 # tolerance on the robot's heading (in radians) when planning # during rotation commands this is an additional error that gets added to # yaw_goal_tolerance heading_lookahead: 0.325 # minimum lookahead to do during path planning. A shorter lookahead is more # cautious (especially in tight spaces) but may be more effective at avoiding # collisions with complex obstacles min_lookahead_distance: 0.4 # maximum lookahead to do during path planning max_lookahead_distance: 2.0 # if true, the global planner will only plan one step at a time # rather than to the final goal state intermediate_planning: false # what topic the planner should use for status feedback planner_frequency: 0.5 planner_topic: "planner_status" # how close the robot must be to the global plan before updating it with # a new one plan_update_distance: 0.5 # how often the planner should be allowed to make new plans. A value of 0 # means plans will be made as often as possible planner_patience: 5.0 # penalty for robot rotation during path planning. A higher penalty will # cause the planner to prefer straighter paths with less turns rotation_penalty: 0.8 # maximum absolute rotation speed allowed while navigating along the global # plan max_rotation_speed: 1.0 # maximum speed to travel along the global plan max_velocity: 0.6 # If true, the global planner will try to avoid obstacles with a combination # of steering and braking. Otherwise, it will only steer around obstacles braking_enabled: true # how many times to retry a goal update if the previous attempt resulted in a # collision or other error. # If set to -1, it will retry indefinitely goal_update_retries: 3 # Whether or not to use the extrinsic rotation control method in the planner use_extrinsic_rotation: true # Enabling this parameter causes the global planner to use # differential constraints for smoother trajectories use_differential_constraints: true # Enabling this parameter causes the planner to assume the # robot is driving on the right-hand side of the street drive_on_right: true # Timeout for the planning process (in seconds). If planning takes longer # than this, the planner will abort and return a failure status planning_timeout: 5.0 # If set, this parameter limits the maximum planning distance the # planner will use. Set to -1 for no limit. max_planning_distance: -1 # Enabling this parameter causes the planner to ignore the robot's ground # clearance when planning. ignore_ground_clearance: false # Whether the planner should try to avoid going backwards avoid_going_backwards: false # The maximum distance (in meters) that the planner will consider changing # the orientation of the robot to better follow the path. Set to -1 to # disable this behavior. max_orientation_change: 0.9 # The minimum distance (in meters) that the planner will consider # detecting a change in orientation of the robot to better follow the path. # Set to -1 to disable this behavior. min_orientation_change: 0.5 # Whether the planner should attempt to use the current local plan when planning. # If set to true, the planner will attempt to connect the current local plan # to the new plan. If set to false, the planner will always start from the robot's # current pose. use_local_plan: true # Whether the planner should attempt to use the current local costmap when planning. # If set to true, the planner will use the local costmap to build an estimate # of the robot's surroundings. If set to false, the planner will only use the # global costmap. use_local_costmap: true # Whether the planner should use the old behavior of setting waypoints to # the right of the global plan. This behavior causes the robot to execute # the plan with a rightward shift. However, it can be problematic if the plan # encounters obstacles on the left side. use_typical_rightward_shift: false # Whether the planner should use a zero velocity as a way to avoid oscillations. # If set to true, the planner will stop the robot and wait for the current goal # to either become unreachable or within the goal tolerance. stop_when_goal_rejected: false # The time (in seconds) that the planner will stop and wait (in case of oscillations) # before trying to replan. stop_and_wait_time: 2.0 # Distance (in meters) to be left before the end of the path. This can be useful # when the robot should stop at a certain distance from the goal pose. path_distance_offset: 0 # Maximum allowed speed deviation from the global plan (in m/s). max_allowed_speed_deviation: 1.0 # Maximum allowed angular deviation from the global plan (in rad). max_allowed_angular_deviation: 1.57 # Whether or not to use a linear navigation function to bias global plan costs toward closer parts of the map. use_linear_navigation_function: false # Whether or not to use a terrain independent cost scale to bias global plan costs toward flatter regions. use_terrain_independent_cost_scale: true # The maximum number of obstacles to check against during planning. max_obstacle_check_count: 500 # If true, the planner will skip planning during the first update cycle after initialization. skip_initial_planning: false # Scaling factor for the distances used in the Adaptive Sampling Path algorithm as_scaler: 1.0 # The maximum length of the Adaptive Sampling Path segments as_max_segment_length: 1.0 # The turning radius for the robot used in the prediction step of the Adaptive Sampling Path algorithm as_robot_radius: 0.3 # The number of areas forward used for heading smoothing in the Adaptive Sampling Path algorithm. # Set to 0 if heading smoothing is not desired. as_heading_smoothing_areas: 0 # The maximum distance the Adaptive Sampling Path algorithm will plan for. # Set to -1 for no limit. as_max_global_plan_distance: -1 # How many layers of costmaps to plan in. A higher value will allow the global # planner to take into account more layers of static and dynamic obstacles. # 0 means only use the base global costmap. planning_layers: 0

Joint limits won't be enforced for joint 'front_left_steer_joint'.

这个问题可能涉及到机器人控制方面的技术问题,我可以回答。这个错误可能是由于机器人控制程序中的错误导致的,需要检查程序中是否正确设置了关节限制。如果程序中正确设置了关节限制,但仍然出现这个错误,可能是由于机器人硬件故障导致的。建议检查机器人硬件是否正常工作。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩