按照房屋挂牌年份统计房屋每平米单价的均值,并绘制该均值随年份的变化趋势,将趋势图中的横轴标签设置为“挂牌时间”、纵轴标签为“均价(元/平米)”
时间: 2024-05-04 08:20:42 浏览: 70
这个问题需要使用数据分析和可视化工具,下面是一些简单的步骤:
1. 收集数据:从房产网站等来源获取房屋挂牌信息,包括房屋面积、挂牌时间、价格等信息。
2. 数据清洗:将数据进行去重、去除异常值等处理,确保数据的准确性和一致性。
3. 数据处理:按照挂牌年份统计每平米单价的均值,可以使用 pandas 库中的 groupby 函数实现。
4. 可视化:使用 matplotlib 或者 seaborn 库绘制均值随年份的变化趋势图,设置横轴标签为“挂牌时间”,纵轴标签为“均价(元/平米)”。
下面是一个简单的代码示例:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据
data = pd.read_csv('house_prices.csv')
# 数据清洗
data.drop_duplicates(inplace=True)
data = data[data['price'] > 0]
data = data[data['area'] > 0]
# 按照挂牌年份统计每平米单价的均值
mean_price = data.groupby('year')['price_per_sqm'].mean()
# 绘制趋势图
plt.plot(mean_price.index, mean_price.values)
plt.xlabel('挂牌时间')
plt.ylabel('均价(元/平米)')
plt.show()
```
其中,house_prices.csv 是包含房屋挂牌信息的数据文件。
阅读全文
相关推荐

















