input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) # 生成 outputs = model.generate(input_ids, attention_mask=attention_mask, max_length=128) # 将token转换为文字 output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) output_str = [s.replace(" ","") for s in output_str] print(output_str)这是什么意思
时间: 2024-02-23 07:56:50 浏览: 303
这段代码是使用已经处理好的样本输入到模型中进行推理,并将模型的输出转换为文字格式。具体来说,"input_ids = inputs.input_ids.to(model.device)" 和 "attention_mask = inputs.attention_mask.to(model.device)" 将样本的input_ids和attention_mask转移到模型所在的设备上;"outputs = model.generate(input_ids, attention_mask=attention_mask, max_length=128)" 是使用模型对输入进行推理,生成模型的输出;"tokenizer.batch_decode(outputs, skip_special_tokens=True)" 将模型的输出转换为文字格式,同时去除掉一些特殊的标记;"[s.replace(" ","") for s in output_str]" 是将输出中的空格去掉,最终输出生成的文字结果。也就是说,这段代码的作用是使用模型对输入进行推理,生成相应的输出,并将输出转换成可以阅读的文字格式。
相关问题
https://github.com/weizhepei/CasRel中run.py解读
`run.py` 是 `CasRel` 项目的入口文件,用于训练和测试模型。以下是 `run.py` 的主要代码解读和功能说明:
### 导入依赖包和模块
首先,`run.py` 导入了所需的依赖包和模块,包括 `torch`、`numpy`、`argparse`、`logging` 等。
```python
import argparse
import logging
import os
import random
import time
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from casrel import CasRel
from dataset import RE_Dataset
from utils import init_logger, load_tokenizer, set_seed, collate_fn
```
### 解析命令行参数
接下来,`run.py` 解析了命令行参数,包括训练数据路径、模型保存路径、预训练模型路径、学习率等参数。
```python
def set_args():
parser = argparse.ArgumentParser()
parser.add_argument("--train_data", default=None, type=str, required=True,
help="The input training data file (a text file).")
parser.add_argument("--dev_data", default=None, type=str, required=True,
help="The input development data file (a text file).")
parser.add_argument("--test_data", default=None, type=str, required=True,
help="The input testing data file (a text file).")
parser.add_argument("--model_path", default=None, type=str, required=True,
help="Path to save, load model")
parser.add_argument("--pretrain_path", default=None, type=str,
help="Path to pre-trained model")
parser.add_argument("--vocab_path", default=None, type=str, required=True,
help="Path to vocabulary")
parser.add_argument("--batch_size", default=32, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs", default=3, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--max_seq_length", default=256, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Linear warmup over warmup_steps.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--logging_steps", type=int, default=500,
help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500,
help="Save checkpoint every X updates steps.")
parser.add_argument("--seed", type=int, default=42,
help="random seed for initialization")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="selected device (default: cuda if available)")
args = parser.parse_args()
return args
```
### 加载数据和模型
接下来,`run.py` 加载了训练、验证和测试数据,以及 `CasRel` 模型。
```python
def main():
args = set_args()
init_logger()
set_seed(args)
tokenizer = load_tokenizer(args.vocab_path)
train_dataset = RE_Dataset(args.train_data, tokenizer, args.max_seq_length)
dev_dataset = RE_Dataset(args.dev_data, tokenizer, args.max_seq_length)
test_dataset = RE_Dataset(args.test_data, tokenizer, args.max_seq_length)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size,
collate_fn=collate_fn)
dev_sampler = SequentialSampler(dev_dataset)
dev_dataloader = DataLoader(dev_dataset, sampler=dev_sampler, batch_size=args.batch_size,
collate_fn=collate_fn)
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.batch_size,
collate_fn=collate_fn)
model = CasRel(args)
if args.pretrain_path:
model.load_state_dict(torch.load(args.pretrain_path, map_location="cpu"))
logging.info(f"load pre-trained model from {args.pretrain_path}")
model.to(args.device)
```
### 训练模型
接下来,`run.py` 开始训练模型,包括前向传播、反向传播、梯度更新等步骤。
```python
optimizer = torch.optim.Adam([{'params': model.bert.parameters(), 'lr': args.learning_rate},
{'params': model.subject_fc.parameters(), 'lr': args.learning_rate},
{'params': model.object_fc.parameters(), 'lr': args.learning_rate},
{'params': model.predicate_fc.parameters(), 'lr': args.learning_rate},
{'params': model.linear.parameters(), 'lr': args.learning_rate}],
lr=args.learning_rate, eps=args.adam_epsilon, weight_decay=args.weight_decay)
total_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
warmup_steps = int(total_steps * args.warmup_proportion)
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda epoch: 1 / (1 + 0.05 * (epoch - 1))
)
global_step = 0
best_f1 = 0
for epoch in range(args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"token_type_ids": batch[2],
"subj_pos": batch[3],
"obj_pos": batch[4],
"subj_type": batch[5],
"obj_type": batch[6],
"subj_label": batch[7],
"obj_label": batch[8],
"predicate_label": batch[9],
}
outputs = model(**inputs)
loss = outputs[0]
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1
if global_step % args.logging_steps == 0:
logging.info(f"Epoch:[{epoch + 1}]/[{args.num_train_epochs}] Step:[{global_step}] "
f"Train loss:{loss.item():.6f}")
if global_step % args.save_steps == 0:
f1 = evaluate(model, dev_dataloader, args)
if f1 > best_f1:
best_f1 = f1
torch.save(model.state_dict(), os.path.join(args.model_path, "best_model.bin"))
logging.info(f"Save model at step [{global_step}] with best f1 {best_f1:.4f}")
```
### 测试模型
最后,`run.py` 对模型进行测试,输出模型在测试集上的预测结果。
```python
model.load_state_dict(torch.load(os.path.join(args.model_path, "best_model.bin"), map_location="cpu"))
logging.info(f"load best model from {os.path.join(args.model_path, 'best_model.bin')}")
f1, precision, recall = evaluate(model, test_dataloader, args)
logging.info(f"Test f1:{f1:.4f} precision:{precision:.4f} recall:{recall:.4f}")
```
以上就是 `run.py` 的主要代码解读和功能说明。
阅读全文