pytorch中的反向传播
时间: 2023-11-12 09:57:41 浏览: 156
PyTorch: 梯度下降及反向传播的实例详解
PyTorch中的反向传播是指利用自动微分技术计算神经网络中每个参数对于损失函数的梯度,并根据梯度更新参数的过程。具体来说,反向传播分为两个步骤:前向传播和反向传播。前向传播是指将输入数据通过神经网络得到输出结果的过程,反向传播是指根据损失函数计算每个参数的梯度并更新参数的过程。
在PyTorch中,可以通过调用backward()函数实现反向传播。在计算损失函数时,需要将requires_grad属性设置为True,以便PyTorch跟踪计算图并计算梯度。在调用backward()函数时,PyTorch会自动计算每个参数的梯度,并将其存储在grad属性中。然后可以通过调用optimizer.step()函数来更新参数。
阅读全文