DELM极限学习机 python
时间: 2023-08-25 08:18:37 浏览: 120
DELM极限学习机(Deep Extreme Learning Machine)是一种用于深度学习的神经网络模型。在训练过程中,通过特征矩阵x来计算隐藏层h的输出。具体计算公式如下:<span class="em">1</span>
#### 引用[.reference_title]
- *1* [【极限学习机ELM与DELM——python实现与应用】](https://blog.csdn.net/m0_37922734/article/details/80424133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
什么是深度极限学习机?请写出深度极限学习机的python代码,详细解释并用IRIS数据集举例
深度极限学习机(Deep Extreme Learning Machine,DELM)是一种无需预训练的深度学习模型。相比于传统的深度学习模型,DELM的训练速度更快,且具有更好的鲁棒性和泛化能力。
下面是DELM的Python代码实现,以IRIS数据集为例:
```python
import numpy as np
from sklearn.datasets import load_iris
from scipy.special import expit
class DELM:
def __init__(self, input_size, hidden_size, output_size):
self.num_hidden_layers = len(hidden_size)
self.weights = []
self.biases = []
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
for i in range(self.num_hidden_layers):
if i == 0:
self.weights.append(np.random.randn(input_size, hidden_size[i]))
else:
self.weights.append(np.random.randn(hidden_size[i-1], hidden_size[i]))
self.biases.append(np.random.randn(hidden_size[i]))
self.weights.append(np.random.randn(hidden_size[-1], output_size))
self.biases.append(np.random.randn(output_size))
def train(self, X, y, num_epochs, learning_rate):
for i in range(num_epochs):
a = X
for j in range(self.num_hidden_layers):
z = np.dot(a, self.weights[j]) + self.biases[j]
a = expit(z)
y_hat = np.dot(a, self.weights[-1]) + self.biases[-1]
error = y - y_hat
delta = error
for j in range(self.num_hidden_layers-1, -1, -1):
self.weights[j] += learning_rate * np.dot(a.T, delta)
delta = np.dot(delta, self.weights[j].T) * a * (1 - a)
a = expit(np.dot(a, self.weights[j]) + self.biases[j])
self.weights[-1] += learning_rate * np.dot(a.T, delta)
self.biases[-1] += np.sum(delta, axis=0)
def predict(self, X):
a = X
for i in range(self.num_hidden_layers):
z = np.dot(a, self.weights[i]) + self.biases[i]
a = expit(z)
y_hat = np.dot(a, self.weights[-1]) + self.biases[-1]
return y_hat
# 加载IRIS数据集
iris = load_iris()
X = iris.data
y = iris.target
# 将输出变量转换为独热编码
y_onehot = np.zeros((len(y), 3))
for i in range(len(y)):
y_onehot[i, y[i]] = 1
# 随机划分训练集和测试集
indices = np.random.permutation(len(X))
train_indices = indices[:int(0.8*len(X))]
test_indices = indices[int(0.8*len(X)):]
X_train = X[train_indices]
y_train = y_onehot[train_indices]
X_test = X[test_indices]
y_test = y_onehot[test_indices]
# 训练DELM模型
input_size = X_train.shape[1]
hidden_size = [10, 10]
output_size = y_train.shape[1]
de = DELM(input_size, hidden_size, output_size)
de.train(X_train, y_train, 1000, 0.01)
# 测试DELM模型
y_pred = de.predict(X_test)
y_pred = np.argmax(y_pred, axis=1)
accuracy = np.mean(y_pred == np.argmax(y_test, axis=1))
print("Accuracy:", accuracy)
```
上述代码中,DELM类的`__init__`方法用于初始化模型,`train`方法用于训练模型,`predict`方法用于对新样本进行预测。IRIS数据集被加载到`X`和`y`中,其中`X`是输入变量,`y`是输出变量。在训练之前,将输出变量`y`转换为独热编码形式`y_onehot`。随机划分训练集和测试集之后,使用训练集训练DELM模型,并在测试集上进行测试,输出模型的准确率。
需要注意的是,DELM模型的超参数(如隐藏层大小、学习率等)需要根据具体应用进行调整,上述代码中的超参数仅供参考。
阅读全文