30城市遗传算法matlab程序
时间: 2023-08-28 12:03:22 浏览: 110
很高兴能够帮助你!以下是一个基于遗传算法的 MATLAB 程序,用于解决旅行商问题(TSP)中的30个城市情况。
```matlab
% 定义城市坐标
cityCoords = [...
37 52; 49 49; 52 64; 20 26; 40 30; ...
21 47; 17 63; 31 62; 52 33; 51 21; ...
42 41; 31 32; 5 25; 12 42; 36 16; ...
52 41; 27 23; 17 33; 13 13; 57 58; ...
62 42; 42 57; 16 57; 8 52; 7 38; ...
27 68; 30 48; 43 67; 58 48; 58 27];
% 定义遗传算法参数
populationSize = 100; % 种群大小
numGenerations = 500; % 迭代次数
mutationRate = 0.02; % 变异率
% 初始化种群
population = createPopulation(populationSize, size(cityCoords,1));
% 开始迭代
for generation = 1:numGenerations
% 计算适应度
fitness = calculateFitness(population, cityCoords);
% 打印当前最优解
[bestFitness, bestIndex] = min(fitness);
bestSolution = population(bestIndex, :);
fprintf('代数 %d: 最短路径 = %f\n', generation, bestFitness);
% 选择下一代种群
newPopulation = selection(population, fitness);
% 交叉产生子代
newPopulation = crossover(newPopulation);
% 变异
newPopulation = mutation(newPopulation, mutationRate);
% 更新种群
population = newPopulation;
end
% 绘制最优路径
figure;
bestSolution = [bestSolution, bestSolution(1)]; % 回到起点
plot(cityCoords(:,1), cityCoords(:,2), 'ko', 'MarkerSize', 10);
hold on;
plot(cityCoords(bestSolution,1), cityCoords(bestSolution,2), 'r-', 'LineWidth', 1.5);
title('最优路径');
xlabel('横坐标');
ylabel('纵坐标');
% 创建初始种群的函数
function population = createPopulation(populationSize, numCities)
population = zeros(populationSize, numCities);
for i = 1:populationSize
population(i,:) = randperm(numCities);
end
end
% 计算适应度的函数
function fitness = calculateFitness(population, cityCoords)
numCities = size(cityCoords, 1);
numIndividuals = size(population, 1);
fitness = zeros(numIndividuals, 1);
for i = 1:numIndividuals
individual = population(i,:);
totalDistance = 0;
for j = 1:numCities-1
cityA = individual(j);
cityB = individual(j+1);
distance = norm(cityCoords(cityA,:) - cityCoords(cityB,:));
totalDistance = totalDistance + distance;
end
fitness(i) = 1 / totalDistance;
end
end
% 选择操作的函数
function newPopulation = selection(population, fitness)
numIndividuals = size(population, 1);
numParents = round(numIndividuals/2);
[~, sortedIndices] = sort(fitness, 'descend');
selectedIndices = sortedIndices(1:numParents);
newPopulation = population(selectedIndices,:);
end
% 交叉操作的函数
function newPopulation = crossover(population)
numParents = size(population, 1);
numOffsprings = size(population, 1) - numParents;
shuffleIndices = randperm(numParents);
parents = population(shuffleIndices,:);
offsprings = zeros(numOffsprings, size(population, 2));
for i = 1:numOffsprings
parentA = parents(i,:);
parentB = parents(i+numOffsprings,:);
crossoverPoint = randi([1, size(population, 2)-1]);
offspring = [parentA(1:crossoverPoint), parentB(crossoverPoint+1:end)];
offsprings(i,:) = offspring;
end
newPopulation = [population; offsprings];
end
% 变异操作的函数
function newPopulation = mutation(population, mutationRate)
numGenes = size(population, 2);
numMutations = round(mutationRate * size(population, 1) * numGenes);
newPopulation = population;
for i = 1:numMutations
individualIndex = randi(size(population, 1));
geneIndexA = randi(numGenes);
geneIndexB = randi(numGenes);
newPopulation(individualIndex, [geneIndexA, geneIndexB]) = ...
newPopulation(individualIndex, [geneIndexB, geneIndexA]);
end
end
```
请注意,此程序仅提供了一种解决方法,并且可能不是最优解。你可以根据需要对其进行调整和优化。希望对你有所帮助!如有任何问题,请随时提出。
阅读全文