写一个python和opencv的代码提取手掌的ROI区域,需要先将手掌的关键点找到,画出中线,再截取ROI
时间: 2023-05-20 08:01:38 浏览: 155
区域。
可以使用以下代码实现:
```
import cv2
import numpy as np
# 读取图像
img = cv2.imread('hand.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用Haar级联分类器检测手掌
palm_cascade = cv2.CascadeClassifier('palm.xml')
palms = palm_cascade.detectMultiScale(gray, 1.3, 5)
# 遍历每一个手掌
for (x,y,w,h) in palms:
# 找到手掌的关键点
palm = gray[y:y+h, x:x+w]
palm_blur = cv2.GaussianBlur(palm, (5, 5), 0)
_, palm_thresh = cv2.threshold(palm_blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
palm_contours, _ = cv2.findContours(palm_thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
palm_contour = max(palm_contours, key=cv2.contourArea)
palm_hull = cv2.convexHull(palm_contour)
defects = cv2.convexityDefects(palm_contour, cv2.convexHull(palm_contour, returnPoints=False))
# 画出手掌的中线
palm_center = tuple(np.mean(palm_contour, axis=0)[0])
palm_far = tuple(palm_contour[palm_contour[:, :, 1].argmin()][0])
palm_near = tuple(palm_contour[palm_contour[:, :, 1].argmax()][0])
cv2.line(img, palm_center, palm_far, (0, 255, 0), 2)
cv2.line(img, palm_center, palm_near, (0, 255, 0), 2)
# 截取ROI区域
mask = np.zeros_like(gray)
cv2.drawContours(mask, [palm_hull], 0, 255, -1)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
mask = cv2.GaussianBlur(mask, (5, 5), 0)
roi = cv2.bitwise_and(img, img, mask=mask)
roi = roi[y:y+h, x:x+w]
# 显示结果
cv2.imshow('ROI', roi)
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,`palm.xml`是Haar级联分类器的模型文件,可以在OpenCV的官方GitHub仓库中找到。
阅读全文