pyspark使用xgboost
时间: 2023-12-08 15:36:41 浏览: 160
以下是使用pyspark调用xgboost的步骤:
1.下载xgboost4j-spark-0.72.jar和xgboost4j-0.72.jar两个jar文件,并将它们放在一个文件夹中。
2.下载sparkxgb.zip文件,并解压缩到一个文件夹中。
3.在你的pyspark代码中,导入xgboost4j-spark-0.72.jar和xgboost4j-0.72.jar两个jar文件:
```python
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("xgboost").getOrCreate()
spark.sparkContext.addPyFile("path/to/sparkxgb.zip")
spark.sparkContext.addPyFile("path/to/xgboost4j-spark-0.72.jar")
spark.sparkContext.addPyFile("path/to/xgboost4j-0.72.jar")
```
4.在你的pyspark代码中,导入xgboost:
```python
from sparkxgb import XGBoostEstimator
```
5.将你的数据转换为Spark DataFrame,并将其拆分为训练集和测试集:
```python
data = spark.read.format("libsvm").load("path/to/data")
(trainingData, testData) = data.randomSplit([0.7, 0.3])
```
6.设置xgboost的参数:
```python
params = {"eta": 0.1, "max_depth": 6, "objective": "binary:logistic", "num_class": 2}
```
7.创建XGBoostEstimator对象,并将参数传递给它:
```python
xgboost = XGBoostEstimator(**params)
```
8.使用fit()方法拟合模型:
```python
model = xgboost.fit(trainingData)
```
9.使用transform()方法对测试集进行预测:
```python
predictions = model.transform(testData)
```
10.评估模型的性能:
```python
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator()
print("Test Area Under ROC: " + str(evaluator.evaluate(predictions)))
```
阅读全文