基于GA-LSTM模型的边坡预测分析国内外研究现状
时间: 2023-11-14 10:03:54 浏览: 107
边坡稳定性分析方法研究现状与展望
边坡是指山体或河岸等地质体在地表向外倾斜,形成的具有一定高度和坡度的地形。边坡的稳定性与地质结构、地貌、水文地质等因素密切相关,其中地质结构是最为重要的因素之一。边坡的失稳会导致山体滑坡、岩体崩塌、泥石流等灾害,严重威胁人民生命财产安全。因此,边坡稳定性分析与预测是地质灾害防治的重要内容之一。
近年来,随着计算机技术的快速发展,人工智能技术在边坡稳定性分析与预测中得到了广泛应用。其中,基于遗传算法和长短时记忆网络(GA-LSTM)模型的边坡预测分析方法备受关注。
在国内,陈旭等人提出了一种基于GA-LSTM模型的边坡位移预测方法,该方法首先利用遗传算法对LSTM模型的超参数进行优化,然后将优化后的LSTM模型应用于边坡位移预测中。结果表明,该方法能够有效地提高边坡位移预测的准确性和稳定性。
在国外,Deng等人提出了一种基于GA-LSTM模型的边坡位移预测方法,该方法采用遗传算法优化LSTM模型的权重和偏置,进而提高模型的预测精度。研究结果表明,该方法能够有效地提高边坡位移预测的准确性和稳定性。
总体来看,基于GA-LSTM模型的边坡预测分析方法具有较高的准确性和稳定性,已经成为当前边坡稳定性分析与预测的研究热点之一。未来,需要进一步探究该方法在不同地质环境和不同时间尺度下的适用性,并结合其他人工智能技术进一步提高预测精度和稳定性。
阅读全文