请举例说明ResetNet用法,Python
时间: 2024-03-05 21:52:38 浏览: 121
下面是一个基于Python和PyTorch实现的ResetNet的示例代码:
```python
import torch
import torch.nn as nn
# 定义Reset Unit
class ResetUnit(nn.Module):
def __init__(self, channels):
super(ResetUnit, self).__init__()
self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(channels)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = out + residual
out = self.relu(out)
return out
# 定义ResetNet
class ResetNet(nn.Module):
def __init__(self, num_classes=10):
super(ResetNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.residual_block1 = ResetUnit(32)
self.residual_block2 = ResetUnit(32)
self.residual_block3 = ResetUnit(32)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.residual_block4 = ResetUnit(64)
self.residual_block5 = ResetUnit(64)
self.residual_block6 = ResetUnit(64)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(64, num_classes)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.residual_block1(out)
out = self.residual_block2(out)
out = self.residual_block3(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.residual_block4(out)
out = self.residual_block5(out)
out = self.residual_block6(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
在上述代码中,我们首先定义了Reset Unit,它包含两个卷积层和归一化层,并且使用了ReLU激活函数和残差连接。然后,我们定义了ResetNet,它由多个Residual Block和全连接层组成。在每个Residual Block中,我们使用了Reset Unit来防止梯度消失和梯度爆炸的问题。最终,我们将全连接层的输出用于分类预测。
你可以根据自己的需求和数据集特点,修改和调整ResetNet的结构和超参数,并使用训练数据集对模型进行训练和测试。
阅读全文