使用pytorch搭建DBN用于负荷预测
时间: 2023-07-06 22:43:32 浏览: 112
dbn pytorch
5星 · 资源好评率100%
DBN可以用于负荷预测,其中输入特征是历史负荷数据,输出是未来的负荷预测。下面是一个使用PyTorch实现DBN用于负荷预测的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class DBN(nn.Module):
def __init__(self, input_size, hidden_sizes):
super(DBN, self).__init__()
self.input_size = input_size
self.hidden_sizes = hidden_sizes
self.num_layers = len(hidden_sizes)
# 创建RBM层
self.rbms = nn.ModuleList()
for i in range(self.num_layers):
if i == 0:
rbm = nn.Linear(self.input_size, self.hidden_sizes[i])
else:
rbm = nn.Linear(self.hidden_sizes[i-1], self.hidden_sizes[i])
self.rbms.append(rbm)
def forward(self, x):
# 前向传播
for i in range(self.num_layers):
rbm = self.rbms[i]
x = F.relu(rbm(x))
return x
class LoadForecast(nn.Module):
def __init__(self, input_size, hidden_sizes, output_size):
super(LoadForecast, self).__init__()
self.input_size = input_size
self.hidden_sizes = hidden_sizes
self.output_size = output_size
# 创建DBN特征提取器
self.dbn = DBN(input_size, hidden_sizes)
# 创建线性层
self.linear = nn.Linear(hidden_sizes[-1], output_size)
def forward(self, x):
# 将输入数据传递给DBN特征提取器
features = self.dbn(x)
# 将特征输入到线性层中
output = self.linear(features)
return output
# 创建模型
model = LoadForecast(input_size=24, hidden_sizes=[128, 64], output_size=1)
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
# 加载数据
train_data = ... # 读取训练数据
test_data = ... # 读取测试数据
# 训练模型
for epoch in range(num_epochs):
for i, (inputs, targets) in enumerate(train_data):
# 将输入数据和目标数据转换为Variable类型
inputs = Variable(torch.Tensor(inputs))
targets = Variable(torch.Tensor(targets))
# 前向传播
outputs = model(inputs)
# 计算损失并进行反向传播
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 在测试集上进行测试
total_loss = 0
for inputs, targets in test_data:
inputs = Variable(torch.Tensor(inputs))
targets = Variable(torch.Tensor(targets))
outputs = model(inputs)
loss = criterion(outputs, targets)
total_loss += loss.data[0]
print('Epoch %d: Test Loss = %.4f' % (epoch+1, total_loss / len(test_data)))
```
在上面的代码中,我们首先定义了一个DBN类,其中包含多个RBM层。然后,我们创建了一个LoadForecast类,该类包含一个DBN特征提取器和一个线性层,用于将特征转换为负荷预测。在训练过程中,我们使用均方误差损失函数和Adam优化器来训练模型,并在测试集上进行测试。
阅读全文