nsga-ii算法matlab代码
时间: 2023-10-09 11:13:33 浏览: 271
NSGA-II算法的matlab代码
以下是NSGA-II算法的Matlab代码示例:
```
% NSGA-II algorithm implementation in Matlab
% Author: https://www.github.com/rafitc
% Adapted from: https://www.mathworks.com/matlabcentral/fileexchange/19915-nsga-ii-a-multi-objective-optimization-algorithm
% Problem definition
n = 10; % Number of decision variables
m = 2; % Number of objectives
lb = zeros(1,n); % Lower bounds
ub = ones(1,n); % Upper bounds
f1 = @(x) x(1); % Objective 1
f2 = @(x) (1+x(2))/x(1); % Objective 2
f = {f1,f2};
% NSGA-II parameters
popSize = 100; % Population size
maxGen = 50; % Maximum number of generations
pc = 0.8; % Crossover probability
nc = 2; % Number of children per crossover
pm = 1/n; % Mutation probability
nm = round(pm*popSize*n); % Number of mutants
eta = 20; % Crossover and mutation distribution index
alpha = 0.5; % Crowding distance parameter
% Initialize population
popDec = lhsdesign(popSize,n);
popObj = evaluatePopulation(popDec,f);
% NSGA-II main loop
for iGen = 1:maxGen
% Non-dominated sorting
fronts = nonDominatedSorting(popObj);
% Crowding distance assignment
dist = crowdingDistanceAssignment(popObj,fronts,alpha);
% Select parents
parents = tournamentSelection(popObj,fronts,dist);
% Generate offspring
offDec = sbxCrossover(parents,pc,nc,lb,ub,eta);
offDec = polynomialMutation(offDec,pm,lb,ub,eta);
% Evaluate offspring
offObj = evaluatePopulation(offDec,f);
% Merge parent and offspring populations
dec = [popDec;offDec];
obj = [popObj;offObj];
% Non-dominated sorting of merged population
fronts = nonDominatedSorting(obj);
% Crowding distance assignment of merged population
dist = crowdingDistanceAssignment(obj,fronts,alpha);
% Select new population
popDec = [];
popObj = [];
iFront = 1;
while(length(popObj) + length(fronts{iFront}) <= popSize)
% Fill up population with fronts
popDec = [popDec;dec(fronts{iFront},:)];
popObj = [popObj;obj(fronts{iFront},:)];
iFront = iFront + 1;
end
if(length(popObj) < popSize)
% Fill up remaining population with individuals from last front
lastFront = fronts{iFront};
[~,rank] = sort(dist(lastFront),'descend');
popDec = [popDec;dec(lastFront(rank(1:popSize-length(popObj))),:)];
popObj = [popObj;obj(lastFront(rank(1:popSize-length(popObj))),:)];
end
% Display progress
disp(['Generation ' num2str(iGen) ': hypervolume = ' num2str(hypervolume(popObj,[0 0]))])
end
% Plot final population
scatter(popObj(:,1),popObj(:,2),20,'k','filled')
xlabel('Objective 1')
ylabel('Objective 2')
title('NSGA-II')
```
注意,此代码中的许多函数都需要自己实现。但是,这个代码示例可以让您了解NSGA-II算法实现的主要步骤。
阅读全文