class Detect(nn.Module): stride = None # strides computed during build export = False # onnx export #初始化模型的各个属性,并构建模型的卷积层 def __init__(self, nc=80, anchors=(), ch=()): # detection layer super(Detect, self).__init__() self.nc = nc # 标签的数量 self.no = nc + 5 # 计算输出层的节点数 self.nl = len(anchors) #检测层数 self.na = len(anchors[0]) // 2 #每个检测层的锚点数量 self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)
时间: 2023-12-31 11:04:44 浏览: 188
这段代码定义了 YOLOv5 目标检测模型中的一个子模块——`Detect`。`Detect` 继承了 PyTorch 中的 `nn.Module` 类,并定义了一些属性,如 `stride`、`export` 以及 `nc`、`no`、`nl`、`na`、`grid`、`anchors`、`anchor_grid` 和 `m`。其中,`nc` 表示标签的数量,`anchors` 是一个元组,表示不同检测层的锚点信息,`ch` 表示输入特征图的通道数。在模块初始化时,该代码会计算出每个检测层的锚点数量(`self.na`)和检测层数(`self.nl`),并将锚点信息转换为 PyTorch 的 `Tensor` 格式(`a`)。此外,该代码还会构造一个 `ModuleList` 对象 `self.m`,其中包含了多个 `nn.Conv2d` 模块,用于对输入特征图进行卷积操作,提取目标检测信息。最终,该模块会输出一个包含目标检测信息的张量,用于后续的目标检测任务。
阅读全文