使用python实现id3
时间: 2024-05-07 09:17:50 浏览: 80
ID3(Iterative Dichotomiser 3)是一种决策树算法,用于分类和预测。下面是使用Python实现ID3算法的基本步骤:
1. 导入必要的库和模块:
```python
import pandas as pd
import numpy as np
from math import log2
```
2. 定义一个函数,用于计算信息熵:
```python
def entropy(data):
labels = data.iloc[:,-1]
unique_labels = labels.unique()
n = len(labels)
entropy = 0
for label in unique_labels:
p = len(labels[labels==label]) / n
entropy += -p * log2(p)
return entropy
```
3. 定义一个函数,用于计算信息增益:
```python
def information_gain(data, feature):
entropy_before = entropy(data)
unique_values = data[feature].unique()
n = len(data)
entropy_after = 0
for value in unique_values:
subset = data[data[feature]==value]
p = len(subset) / n
entropy_after += p * entropy(subset)
return entropy_before - entropy_after
```
4. 定义一个函数,用于选择最佳的特征:
```python
def choose_best_feature(data):
features = data.columns[:-1]
best_feature = None
best_information_gain = -1
for feature in features:
ig = information_gain(data, feature)
if ig > best_information_gain:
best_feature = feature
best_information_gain = ig
return best_feature
```
5. 定义一个递归函数,用于构建决策树:
```python
def build_tree(data):
labels = data.iloc[:, -1]
if len(labels.unique()) == 1:
return labels.iloc[0]
if len(data.columns) == 1:
return labels.mode()[0]
best_feature = choose_best_feature(data)
tree = {best_feature:{}}
unique_values = data[best_feature].unique()
for value in unique_values:
subset = data[data[best_feature]==value].drop(best_feature, axis=1)
subtree = build_tree(subset)
tree[best_feature][value] = subtree
return tree
```
6. 最后,导入数据并生成决策树:
```python
data = pd.read_csv('data.csv')
tree = build_tree(data)
print(tree)
```
这就是使用Python实现ID3算法的基本步骤。当然,这只是一个简单的实现,还可以根据实际情况进行优化。
阅读全文