写出用python实现遗传算法的代码
时间: 2023-02-26 19:03:07 浏览: 79
答案:def geneticAlgorithm(population, fitness_fn, ngen=100, pmut=0.1):
for i in range(ngen):
# 评估新一代种群
population = [ (ind, fitness_fn(ind)) for ind in population ]
population = [ x[0] for x in sorted(population, key=lambda x: x[1], reverse=True) ] # 产生新一代种群(交叉繁殖)
new_population = []
while len(new_population) < len(population):
male = random.choice(population)
female = random.choice(population)
child = breed(male, female)
if random.random() < pmut:
child = mutate(child)
new_population.append(child)
population = new_population
return population
相关问题
请写出一段遗传算法的代码,用Python
### 回答1:
答:def GeneticAlgorithm(population, fitness_fn, ngen=100, pmut=0.1):
for i in range(ngen):
# 对种群中的每个个体评估适应度
population = [ (individual, fitness_fn(individual))
for individual in population]
# 按照适应度从高到低排序
population = [ individual[0] for individual in sorted(population, key=lambda individual: individual[1], reverse=True)]
# 选取最优秀的个体,称为父母
parents = population[:len(population)//2]
# 交叉繁殖
offspring = []
for i in range(len(parents)//2):
parent1 = parents[i]
parent2 = parents[len(parents)-1-i]
child1, child2 = crossover(parent1, parent2)
offspring.append(child1)
offspring.append(child2)
# 变异
for i in range(len(offspring)):
if random.random() < pmut:
offspring[i] = mutation(offspring[i])
# 选取新的种群
population = parents + offspring
return population
### 回答2:
遗传算法是一种模拟遗传过程的优化算法。下面是一个用Python编写的简单遗传算法的示例代码:
```python
import numpy as np
# 定义适应度函数
def fitness_func(solution):
return np.sum(solution)
# 初始化种群
def init_population(pop_size, chromosome_length):
return np.random.randint(2, size=(pop_size, chromosome_length))
# 选择操作
def selection(population, fitness_values):
fitness_sum = np.sum(fitness_values)
selection_probs = fitness_values / fitness_sum
selected_indices = np.random.choice(len(population), size=len(population), p=selection_probs)
return population[selected_indices]
# 交叉操作
def crossover(parent1, parent2):
crossover_point = np.random.randint(0, len(parent1) + 1)
child1 = np.concatenate((parent1[:crossover_point], parent2[crossover_point:]))
child2 = np.concatenate((parent2[:crossover_point], parent1[crossover_point:]))
return child1, child2
# 变异操作
def mutation(individual, mutation_rate):
for i in range(len(individual)):
if np.random.rand() < mutation_rate:
individual[i] = 1 - individual[i] # 变异位点翻转
return individual
# 遗传算法实现
def genetic_algorithm(population_size, chromosome_length, mutation_rate, generations):
population = init_population(population_size, chromosome_length)
fitness_values = np.zeros(population_size)
for generation in range(generations):
for i in range(population_size):
fitness_values[i] = fitness_func(population[i])
population = selection(population, fitness_values)
new_population = []
for i in range(0, population_size, 2):
parent1, parent2 = population[i], population[i+1]
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1, mutation_rate)
child2 = mutation(child2, mutation_rate)
new_population.append(child1)
new_population.append(child2)
population = np.array(new_population)
best_individual = population[np.argmax(fitness_values)]
best_fitness = np.max(fitness_values)
return best_individual, best_fitness
# 示例运行
population_size = 100
chromosome_length = 10
mutation_rate = 0.01
generations = 100
best_individual, best_fitness = genetic_algorithm(population_size, chromosome_length, mutation_rate, generations)
print("最优个体:", best_individual)
print("最优适应度:", best_fitness)
```
以上代码实现了一个简单的遗传算法,通过遗传算法优化一个01串的问题。代码中包括适应度函数的定义、种群初始化、选择、交叉、变异等操作的实现。最后通过遗传算法迭代,得到最优的个体和适应度。
采用遗传算法用python写出TSP问题的代码
以下是一个使用遗传算法解决TSP问题的Python代码示例:
```python
import random
# TSP问题的城市坐标
cities = [(60, 200), (180, 200), (80, 180), (140, 180), (20, 160),
(100, 160), (200, 160), (140, 140), (40, 120), (100, 120),
(180, 100), (60, 80), (120, 80), (180, 60), (20, 40), (100, 40),
(200, 40), (20, 20), (60, 20), (160, 20)]
# 遗传算法参数
POPULATION_SIZE = 50
ELITE_SIZE = 10
MUTATION_RATE = 0.01
GENERATIONS = 100
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
# 计算一条路径的总距离
def path_distance(path):
return sum(distance(cities[path[i]], cities[path[i+1]]) for i in range(len(path)-1))
# 初始化种群
def init_population():
return [random.sample(range(len(cities)), len(cities)) for _ in range(POPULATION_SIZE)]
# 选择精英个体
def select_elites(population):
return sorted(population, key=path_distance)[:ELITE_SIZE]
# 交叉操作
def crossover(parent1, parent2):
start = random.randint(0, len(parent1)-2)
end = random.randint(start+1, len(parent1)-1)
child = [-1] * len(parent1)
for i in range(start, end+1):
child[i] = parent1[i]
j = 0
for i in range(len(parent2)):
if parent2[i] not in child:
while child[j] != -1:
j += 1
child[j] = parent2[i]
return child
# 变异操作
def mutate(path):
if random.random() < MUTATION_RATE:
i = random.randint(0, len(path)-1)
j = random.randint(0, len(path)-1)
path[i], path[j] = path[j], path[i]
# 遗传算法主函数
def genetic_algorithm():
population = init_population()
elites = select_elites(population)
for generation in range(GENERATIONS):
new_population = elites[:]
while len(new_population) < POPULATION_SIZE:
parent1, parent2 = random.sample(elites, 2)
child = crossover(parent1, parent2)
mutate(child)
new_population.append(child)
elites = select_elites(new_population)
return elites[0]
# 运行遗传算法并输出结果
best_path = genetic_algorithm()
print("最短路径:", best_path)
print("总距离:", path_distance(best_path))
```
注意:这只是一个简单的示例代码,实际应用中可能需要更复杂的遗传算法实现和更高效的优化方法。
阅读全文