用Python语言写出钻石数据分析与价格预测
时间: 2024-12-20 19:16:27 浏览: 12
在Python中,钻石数据通常包含在像Pandas库这样的数据处理框架中分析,而机器学习算法如线性回归、随机森林或神经网络可以用于价格预测。以下是一个简单的例子,演示如何处理钻石数据集(假设使用的是Python的Scikit-Learn库):
```python
# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 加载钻石数据集,这里假定是从CSV文件中读取
diamonds_df = pd.read_csv('diamonds.csv')
# 数据预处理
X = diamonds_df.drop(['price'], axis=1) # 特征列
y = diamonds_df['price'] # 目标变量
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 标准化数值特征
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 创建并训练线性回归模型
model = LinearRegression()
model.fit(X_train_scaled, y_train)
# 预测
predictions = model.predict(X_test_scaled)
# 评估模型性能
mse = mean_squared_error(y_test, predictions)
print(f"Mean Squared Error: {mse}")
#
阅读全文