编写一个python程序,生成过去2013年至2024年某海域气压,温度,风速的水文气象数据,并按季节性分布符合日常变化规律
时间: 2024-10-17 12:14:12 浏览: 19
python基于趋势和季节性的时间序列气象数据预测.rar
5星 · 资源好评率100%
编写这样的Python程序需要结合numpy、pandas库来创建数据,matplotlib用于数据可视化,以及一些假设的随机生成函数来模拟气压、温度和风速的变化。以下是一个简单的示例,这里假设数据是在每个季度随机生成的,但请注意,这只是一个基础框架,实际数据应基于真实的气候数据或模型预测:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 定义生成数据的函数,这里我们用正态分布作为例子
def generate_data(mean, std_dev, n_samples):
return np.random.normal(loc=mean, scale=std_dev, size=n_samples)
# 假设的年度平均值和标准差
mean_pressure = 1013 # 单位:hPa
std_pressure = 5 # 单位:hPa
mean_temp = 20 # 单位:摄氏度
std_temp = 2 # 单位:摄氏度
mean_wind_speed = 5 # 单位:米/秒
std_wind_speed = 1 # 单位:米/秒
# 创建日期范围
start_date = '2013-01-01'
end_date = '2024-12-31'
date_range = pd.date_range(start=start_date, end=end_date, freq='Q')
# 按季度生成数据
data = {
'Year': date_range.year,
'Quarter': date_range.quarter,
'Pressure': generate_data(mean_pressure, std_pressure, len(date_range)),
'Temperature': generate_data(mean_temp, std_temp, len(date_range)),
'WindSpeed': generate_data(mean_wind_speed, std_wind_speed, len(date_range))
}
# 将数据转换为DataFrame并设置索引为日期
df = pd.DataFrame(data).set_index('Year')
df.index.name = 'Date'
# 按季度分组,计算每季度的平均值
seasonal_data = df.groupby(df.index.quarter).agg(['mean', 'median'])
# 可视化数据
fig, axs = plt.subplots(3, figsize=(10, 8), sharex=True)
for i, col in enumerate(['Pressure', 'Temperature', 'WindSpeed']):
seasonal_data[col].plot(ax=axs[i], title=f'{col} (Seasonal Average)')
plt.tight_layout()
plt.show()
#
阅读全文