Keras写得transformer时间序列预测代码
时间: 2023-09-03 22:15:50 浏览: 243
以下一个使用Keras编写的Transformer时间序列预测代码示例:
```python
import numpy as np
from keras.models import Model
from keras.layers import Input, Dense, Dropout, LayerNormalization, Add
from keras.layers import MultiHeadAttention, Flatten, Embedding
# 构建Transformer模型
def build_transformer_model(input_shape):
inputs = Input(shape=input_shape)
x = Embedding(input_dim=input_shape[0], output_dim=input_shape[1])(inputs)
x = Dropout(0.1)(x)
# 多头注意力层
multi_head_att = MultiHeadAttention(num_heads=8, key_dim=64)
att_out = multi_head_att(x, x)
att_out = Dropout(0.1)(att_out)
att_out = Add()([att_out, x])
att_out = LayerNormalization()(att_out)
# Feedforward层
ff = Dense(units=2048, activation='relu')(att_out)
ff = Dense(units=input_shape[1])(ff)
ff = Dropout(0.1)(ff)
ff = Add()([ff, att_out])
ff = LayerNormalization()(ff)
# 展平层
flatten = Flatten()(ff)
# 输出层
outputs = Dense(units=1, activation='linear')(flatten)
model = Model(inputs=inputs, outputs=outputs)
return model
# 构建训练数据
def build_data(n, sequence_length):
x = np.zeros((n, sequence_length), dtype=np.int32)
y = np.zeros((n, 1), dtype=np.float32)
for i in range(n):
x[i] = np.arange(i, i+sequence_length)
y[i] = np.sin(i+sequence_length)
return x, y
# 训练模型
x_train, y_train = build_data(10000, 64)
model = build_transformer_model((100, 64))
model.compile(optimizer='adam', loss='mse')
model.fit(x_train, y_train, epochs=10, batch_size=32)
# 预测
x_test, y_test = build_data(100, 64)
y_pred = model.predict(x_test)
print("Predicted Values:", y_pred[:, 0])
print("True Values:", y_test[:, 0])
```
这个代码构建了一个Transformer模型,用于预测一个正弦函数。您可以根据需要更改输入形状和模型超参数,以适应您的数据集和任务。
阅读全文