请写出用于语音增强的DPRNN网络的Python代码
时间: 2023-09-03 11:27:20 浏览: 213
python神经网络编程实现手写数字识别
### 回答1:
import torch
from torch import nnclass DPRNN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2):
super(DPRNN, self).__init__()
self.num_layers = num_layers
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim #RNN and Linear modules
self.rnns = nn.ModuleList()
self.linear = nn.ModuleList()
for i in range(num_layers):
self.rnns.append(nn.GRU(input_dim, hidden_dim, batch_first=True))
self.linear.append(nn.Linear(hidden_dim, output_dim)) def forward(self, x):
#RNN forward pass
out = x
for i in range(self.num_layers):
out, _ = self.rnns[i](out)
out = self.linear[i](out)
return out
### 回答2:
DPRNN(Dual-Path Recurrent Neural Network)是一种用于语音增强的神经网络模型。它通过将原始语音信号分离为清晰语音和噪声成分,提高语音信号的质量。下面是一个使用Python实现的简单的DPRNN网络代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class DPRNN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super(DPRNN, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.rnn = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_dim * 2, output_dim)
def forward(self, input):
B, T, F = input.size() # B: batch_size, T: sequence_len, F: feature_dim
input = input.permute(0, 2, 1) # (B, F, T) for LSTM
# DPRNN
output, _ = self.rnn(input) # (B, F, 2H)
output = output.view(B, F, 2, self.hidden_dim) # (B, F, 2, H)
output = torch.sum(output, dim=2) # (B, F, H)
# Feature-wise gated output
gated_output = torch.sigmoid(self.fc(output)) # (B, F, O)
# Masking and Enhancement
output = input * gated_output.unsqueeze(3) # (B, F, T, O)
output = output.permute(0, 2, 1, 3) # (B, T, F, O)
return output
```
在这个DPRNN网络中,我们首先使用一个双向LSTM层对输入语音信号进行编码。然后,通过一个全连接层将LSTM输出映射到所需的输出维度。接下来,我们使用一个sigmoid函数将特征维度进行门控,以产生特征权重。最后,我们将这些权重应用于输入信号,将不需要的噪声成分移除,以增强语音信号。
阅读全文