什么是深度极限学习机?请写出深度极限学习机的python代码,详细解释并用IRIS数据集举例

时间: 2023-07-29 10:13:49 浏览: 129
深度极限学习机(Deep Extreme Learning Machine,DELM)是一种无需预训练的深度学习模型。相比于传统的深度学习模型,DELM的训练速度更快,且具有更好的鲁棒性和泛化能力。 下面是DELM的Python代码实现,以IRIS数据集为例: ```python import numpy as np from sklearn.datasets import load_iris from scipy.special import expit class DELM: def __init__(self, input_size, hidden_size, output_size): self.num_hidden_layers = len(hidden_size) self.weights = [] self.biases = [] self.input_size = input_size self.output_size = output_size self.hidden_size = hidden_size for i in range(self.num_hidden_layers): if i == 0: self.weights.append(np.random.randn(input_size, hidden_size[i])) else: self.weights.append(np.random.randn(hidden_size[i-1], hidden_size[i])) self.biases.append(np.random.randn(hidden_size[i])) self.weights.append(np.random.randn(hidden_size[-1], output_size)) self.biases.append(np.random.randn(output_size)) def train(self, X, y, num_epochs, learning_rate): for i in range(num_epochs): a = X for j in range(self.num_hidden_layers): z = np.dot(a, self.weights[j]) + self.biases[j] a = expit(z) y_hat = np.dot(a, self.weights[-1]) + self.biases[-1] error = y - y_hat delta = error for j in range(self.num_hidden_layers-1, -1, -1): self.weights[j] += learning_rate * np.dot(a.T, delta) delta = np.dot(delta, self.weights[j].T) * a * (1 - a) a = expit(np.dot(a, self.weights[j]) + self.biases[j]) self.weights[-1] += learning_rate * np.dot(a.T, delta) self.biases[-1] += np.sum(delta, axis=0) def predict(self, X): a = X for i in range(self.num_hidden_layers): z = np.dot(a, self.weights[i]) + self.biases[i] a = expit(z) y_hat = np.dot(a, self.weights[-1]) + self.biases[-1] return y_hat # 加载IRIS数据集 iris = load_iris() X = iris.data y = iris.target # 将输出变量转换为独热编码 y_onehot = np.zeros((len(y), 3)) for i in range(len(y)): y_onehot[i, y[i]] = 1 # 随机划分训练集和测试集 indices = np.random.permutation(len(X)) train_indices = indices[:int(0.8*len(X))] test_indices = indices[int(0.8*len(X)):] X_train = X[train_indices] y_train = y_onehot[train_indices] X_test = X[test_indices] y_test = y_onehot[test_indices] # 训练DELM模型 input_size = X_train.shape[1] hidden_size = [10, 10] output_size = y_train.shape[1] de = DELM(input_size, hidden_size, output_size) de.train(X_train, y_train, 1000, 0.01) # 测试DELM模型 y_pred = de.predict(X_test) y_pred = np.argmax(y_pred, axis=1) accuracy = np.mean(y_pred == np.argmax(y_test, axis=1)) print("Accuracy:", accuracy) ``` 上述代码中,DELM类的`__init__`方法用于初始化模型,`train`方法用于训练模型,`predict`方法用于对新样本进行预测。IRIS数据集被加载到`X`和`y`中,其中`X`是输入变量,`y`是输出变量。在训练之前,将输出变量`y`转换为独热编码形式`y_onehot`。随机划分训练集和测试集之后,使用训练集训练DELM模型,并在测试集上进行测试,输出模型的准确率。 需要注意的是,DELM模型的超参数(如隐藏层大小、学习率等)需要根据具体应用进行调整,上述代码中的超参数仅供参考。
阅读全文

相关推荐

最新推荐

recommend-type

paddle深度学习:使用(jpg + xml)制作VOC数据集

在深度学习领域,数据集是模型训练的基础,特别是对于计算机视觉任务,VOC(PASCAL Visual Object Classes)数据集是一种广泛使用的标准数据集。本文将详细介绍如何利用已有的jpg图像和xml注释文件,来构建符合VOC...
recommend-type

深度学习自学记录(3)——两种多分类混淆矩阵的Python实现(含代码)

在深度学习领域,混淆矩阵是评估分类模型性能的重要工具,特别是在多分类问题中。混淆矩阵是一种二维表格,展示了模型预测结果与实际结果的对比,帮助我们理解模型在不同类别上的表现。它由True Positive (TP),True...
recommend-type

深度学习入门(一)感知机.docx

【深度学习入门(一)感知机】 感知机是深度学习领域的基础模型,它是一种简单的线性分类器,具有输入和输出。在这个模型中,输入通过加权和的方式与一个偏置值结合,根据结果是否超过预设的阈值来决定输出是1...
recommend-type

深度信念网络分类算法python程序.docx

深度信念网络分类算法Python程序是基于RBM和BP算法的深度学习模型,可以学习数据的分布式表示,然后使用BP算法对模型进行微调拟合,以提高模型的分类性能。该算法可以应用于图像分类、自然语言处理等领域。 知识点...
recommend-type

免费使用阿里天池GPU深度学习.pdf

Jupyter Notebook是一个交互式的计算环境,支持Python等多门编程语言,便于编写、测试和展示代码,非常适合深度学习模型的开发和训练。 在比赛页面,用户可以下载所需的数据集,并仔细阅读比赛规则。接着,进入天池...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。