def get_data(index_dict,word_vectors,combined,y): n_symbols = len(index_dict) + 1 # 所有单词的索引数,频数小于10的词语索引为0,所以加1 embedding_weights = np.zeros((n_symbols, vocab_dim)) # 初始化 索引为0的词语,词向量全为0 for word, index in index_dict.items(): # 从索引为1的词语开始,对每个词语对应其词向量 embedding_weights[index, :] = word_vectors[word] x_train, x_test, y_train, y_test = train_test_split(combined, y, test_size=0.2) y_train = keras.utils.to_categorical(y_train,num_classes=3) y_test = keras.utils.to_categorical(y_test,num_classes=3) # print x_train.shape,y_train.shape return n_symbols,embedding_weights,x_train,y_train,x_test,y_test
时间: 2023-12-24 16:41:50 浏览: 68
这段代码主要是用于将原始的文本数据转换成神经网络训练所需的格式,其中包括了以下几个步骤:
1. 统计所有单词的个数,并为每个单词分配一个索引,其中频数小于10的单词的索引为0,加1是因为要为索引为0的单词初始化一个全0的词向量。
2. 根据单词和其对应的词向量,初始化一个n_symbols x vocab_dim的矩阵,其中n_symbols为所有单词的索引数,vocab_dim为词向量的维度。
3. 将文本数据和对应的标签划分为训练集和测试集,同时将标签转换为one-hot编码的形式。
4. 返回n_symbols、embedding_weights、x_train、y_train、x_test、y_test这些变量,其中x_train和x_test是经过转换后的文本数据,y_train和y_test是对应的标签。
相关问题
def word2vec_train(combined): model = Word2Vec(size=vocab_dim, min_count=n_exposures, window=window_size, workers=cpu_count, iter=n_iterations) model.build_vocab(combined) # input: list model.train(combined) model.save('../model/Word2vec_model.pkl') index_dict, word_vectors,combined = create_dictionaries(model=model,combined=combined) return index_dict, word_vectors,combined print ('Training a Word2vec model...') index_dict, word_vectors,combined=word2vec_train(combined)
我正在使用 Word2Vec 进行训练,词汇维度为 vocab_dim,最小出现次数为 n_exposures,窗口大小为 window_size,使用 cpu_count 个核心,迭代次数为 n_iterations。
def word2vec_train(combined): model = Word2Vec(size=vocab_dim, min_count=n_exposures, window=window_size, workers=cpu_count, iter=n_iterations) model.build_vocab(combined) # input: list model.train(combined) model.save('C:/Users/22927/Desktop/1/model/Word2vec_model.pkl') index_dict, word_vectors,combined = create_dictionaries(model=model,combined=combined) return index_dict, word_vectors,combined
这段代码定义了一个名为 `word2vec_train()` 的函数,用于训练词向量模型和生成词典。函数包含一个参数 `combined`,表示输入的文本数据,是一个包含多个文本序列的列表。
函数首先使用 `Word2Vec()` 函数创建一个词向量模型 `model`,并设置了模型的一些参数,如词向量的维度 `size`、最小词频 `min_count`、窗口大小 `window`、使用的 CPU 数量 `workers` 和迭代次数 `iter`。接着,使用 `build_vocab()` 方法将文本数据 `combined` 中的词语添加到词向量模型 `model` 中。最后,使用 `train()` 方法对词向量模型 `model` 进行训练,并将训练好的模型保存到本地。同时,通过调用 `create_dictionaries()` 函数,生成词典 `index_dict` 和词向量 `word_vectors`,以及对文本数据进行整数序列转换,返回 `combined` 序列。
最终,函数返回 `index_dict`、`word_vectors` 和 `combined` 三个对象,其中,`index_dict` 是一个将词语映射为索引的字典,`word_vectors` 是一个将词语映射为词向量的字典,`combined` 是一个经过整数序列转换后的文本数据。
阅读全文