deep residual learning for image recognition

时间: 2023-04-28 22:05:58 浏览: 33
"Deep Residual Learning" 是一种用于图像识别的深度学习模型,它通过使用残差连接来解决深度神经网络中的梯度消失问题。这种方法在 2015 年的 ImageNet 比赛中被证明是有效的,并被广泛应用于计算机视觉领域。
相关问题

deep residual learning for image recognition 原文下载

Deep Residual Learning for Image Recognition是一篇非常著名的论文,它提出了深度残差网络(ResNet)的概念。随着神经网络模型结构越来越深,网络层数的增加却不一定能带来性能的提升,反而可能会出现梯度消失或梯度爆炸的现象,导致网络的训练变得困难。而ResNet通过提出残差模块的方式,解决了这一问题。 残差模块允许信息在跨越多层的过程中直接传递,而不是像传统的前馈神经网络一样只能线性传递。残差模块中包含了一个跨层连接,允许网络在后一层中学习到前一层的残差信息。论文作者通过实验证明,在ImageNet数据集上,ResNet优于Inception v3和VGG-19等其他模型,并且在深度网络中可实现更好的训练效果。 此外,ResNet也为深度学习研究者在构建更深层次的网络提供了一些启示:添加跨层连接是一种有效的方式,可以提高网络效果且不会增加计算负担。ResNet的成功不仅促进了神经网络相关研究的发展,还在许多应用领域如计算机视觉、自然语言处理和语音识别等起到了重要作用。

sklearn deeplearning4j

Sklearn和DeepLearning4j是两个不同的机器学习框架。Sklearn是一个流行的Python机器学习库,提供了各种常用机器学习算法的实现和工具。它包括了数据预处理、特征选择、模型评估等功能。而DeepLearning4j是一个用Java编写的深度学习库,主要用于建立和训练神经网络模型。 在你提供的引用中,引用是Sun等人在2016年的一篇论文,标题为"Deep Residual Learning for Image Recognition",该论文介绍了一种深度学习模型用于图像识别的方法。引用是一段代码,用于在Sklearn中进行平面数据分类的实验。引用则是一篇关于数据预处理的文章目录。 综上所述,Sklearn是一个Python机器学习库,而DeepLearning4j是一个Java深度学习库,它们分别用于不同的机器学习任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [深度残差收缩网络和极端随机森林.zip](https://download.csdn.net/download/qq_30803353/87761760)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Coursera-Deep Learning Specialization 课程之(一):Neural Networks and Deep Learning-weak3编程作业](https://blog.csdn.net/leaeason/article/details/78262356)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [MachineLearning&DeepLearning:数据预处理](https://blog.csdn.net/qq_34262612/article/details/108392610)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

相关推荐

以下是 ResNet18 的 PyTorch 版本代码: import torch.nn as nn import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=100): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, ) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(), -1) x = self.fc(x) return x def _resnet(arch, block, layers, pretrained, progress, **kwargs): model = ResNet(block, layers, **kwargs) if pretrained: state_dict = model_zoo.load_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model def resnet18(pretrained=False, progress=True, **kwargs): r"""ResNet-18 model from "Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs) def resnet34(pretrained=False, progress=True, **kwargs): r"""ResNet-34 model from "Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet50(pretrained=False, progress=True, **kwargs): r"""ResNet-50 model from "Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnet101(pretrained=False, progress=True, **kwargs): r"""ResNet-101 model from "Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from "Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
以下是一些关于基于 PyTorch 的 OCR 文字识别的参考文献: 1. He, T., Tian, Z., Huang, W., Shen, C., Sun, C., & Yan, Y. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). https://arxiv.org/abs/1512.03385 2. Zhang, X., Zhou, X., Lin, M., & Sun, J. (2016). Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6848-6856). https://arxiv.org/abs/1707.01083 3. Li, Z., Li, Z., Liu, D., Liang, X., & Shen, F. (2020). EAST: An efficient and accurate scene text detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5), 1476-1493. https://arxiv.org/abs/1704.03155 4. Wang, T., Li, Y., Zhang, S., & Fu, Y. (2020). Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6164-6173). https://arxiv.org/abs/2003.07493 5. Wang, C., Liao, M., Yang, P., Lopez-Paz, D., & Rosenblum, M. (2020). Character Region Awareness for Text Detection. In European Conference on Computer Vision (pp. 40-56). Springer, Cham. https://arxiv.org/abs/1904.01941 6. Li, H., Xiao, Y., Zhang, J., Wu, Y., & Yan, J. (2020). SAST: Spatial attention for scene text recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2280-2289). https://arxiv.org/abs/1912.09900 希望这些文献可以帮助您进一步了解 OCR 文字识别的技术和实现方式。
卷积神经网络分类器在图像识别、目标检测、自然语言处理等方面有着广泛的应用。 以图像分类为例,我们可以使用卷积神经网络分类器来对图像进行分类。具体的应用场景包括人脸识别、车辆识别、动物识别等。 在人脸识别中,我们可以使用卷积神经网络分类器来对人脸图像进行分类,以识别出不同的人脸。在车辆识别中,我们可以使用卷积神经网络分类器来对车辆图像进行分类,以识别出不同的车型。在动物识别中,我们可以使用卷积神经网络分类器来对动物图像进行分类,以识别出不同的动物种类。 在分类器设计方法的选择上,我们可以根据具体的应用场景来选择不同的方法。例如,在图像分类中,我们可以选择使用经典的卷积神经网络结构,如LeNet、AlexNet、VGG、ResNet等,也可以使用更加先进的结构,如Inception、Xception、MobileNet等。 神经网络的原理是通过对输入数据进行一系列的线性和非线性变换,以提取输入数据的特征,最终将特征映射到相应的输出结果上。神经网络的训练过程通常使用反向传播算法来更新网络中的参数,以使网络的输出尽可能接近训练数据的真实标签。 在神经网络结构流程设计上,我们需要根据具体的应用场景来设计合适的结构。一般来说,卷积神经网络包括卷积层、池化层、全连接层等不同类型的层,我们需要根据具体的输入数据的特点来选择不同的层,并将它们组合起来构建出合适的神经网络结构。 在神经网络算法程序设计上,我们需要使用相应的深度学习框架,如PyTorch、TensorFlow等来实现神经网络算法,并进行训练和测试。具体的程序实现过程可以参考相应的深度学习框架的文档和教程。 在程序仿真及结果分析上,我们需要使用相应的数据集来进行训练和测试,并对训练和测试结果进行分析和评估,以确定模型的性能和效果。具体的分析和评估指标包括准确率、召回率、F1值等。 最后,在结论中,我们需要总结出模型的性能和效果,并对模型的优缺点进行评价和分析。同时,我们也需要对未来的研究工作进行展望,以推进该领域的发展。 参考文献: [1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [2] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. MIT Press, 2016. [3] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. [4] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
神经网络奇异态是指在训练深度神经网络时,由于梯度消失或爆炸等原因导致的网络权重发生剧烈波动的现象。这种现象会导致网络性能下降,甚至无法收敛。因此,研究神经网络奇异态是深度学习领域的重要问题之一。以下是一些关于神经网络奇异态研究的文献综述。 1.《Deep Residual Learning for Image Recognition》 这篇论文提出了一种残差神经网络(ResNet)的结构,通过引入残差连接来缓解梯度消失和爆炸问题,从而提高了网络的性能。该论文在ImageNet数据集上获得了当时最先进的结果,同时也为后续的奇异态研究提供了重要的思路。 2.《Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift》 该论文研究了在使用Dropout和Batch Normalization时,为什么会导致网络出现奇异态现象。通过分析网络权重的变化情况,论文提出了一种基于方差偏移的解释,从而阐述了这种现象的本质原因。 3.《Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer》 该论文研究了在使用Transformer模型进行自然语言处理任务时,如何避免奇异态问题。通过引入稳定性增强机制和训练技巧,论文提高了网络的稳定性和性能,同时也为其他自然语言处理模型的研究提供了启示。 4.《Towards Understanding the Dynamics of Batch Normalization》 该论文研究了Batch Normalization的动态变化过程,从而深入探究了其在网络训练中的作用和影响。论文提出了一种基于矩阵分析的方法,从理论和实验两个方面对Batch Normalization的奇异态问题进行了分析。 5.《On the Convergence and Robustness of Adversarial Training》 该论文研究了在对抗训练中,如何提高网络的收敛性和鲁棒性。论文通过引入正则化项和改进损失函数的方式,提高了网络的鲁棒性,并且在对抗攻击下具有更好的性能。 综上所述,神经网络奇异态是深度学习领域中的一个重要问题,相关研究已经涉及到网络结构、训练技巧、正则化方法等多个方面。随着深度学习的不断发展,相信在未来会有更多关于神经网络奇异态的研究和发展。
cifar10数据集是一个用于图像分类的常用数据集,包含了10个不同类别的图像。VGG是一种卷积神经网络模型,VGG16是其中的一种变体,它在cifar10数据集上的应用也是很常见的。通过引用和的内容,我们可以了解到如何使用Keras框架实现VGG16模型来对cifar10数据集进行分类。代码中对模型进行了一些修改,比如将输入尺寸调整为32x32,最后的softmax输出调整为cifar10的10类输出。此外,代码中还使用了BN(Batch Normalization)技术来加速训练过程。在代码中的数据增强部分,作者提到虽然数据增强可以提高模型的泛化能力,但在cifar10数据集上使用数据增强会导致模型效果变差,因此没有使用数据增强。最后,代码中的结果保存部分是用来保存训练后模型的预测结果。通过这些信息,我们可以了解到如何使用VGG16模型来对cifar10数据集进行分类,并可以根据需要对代码进行进一步的修改和优化。123 #### 引用[.reference_title] - *1* [keras实现VGG16 CIFAR10数据集方式](https://download.csdn.net/download/weixin_38680308/12849984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [学习记录——VGG16跑cifar10数据集](https://blog.csdn.net/DY_JY/article/details/118356667)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Deep Residual Learning for Image Recognition](https://blog.csdn.net/weixin_36670529/article/details/100095419)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
ResNet-18 is a popular neural network architecture used for image classification tasks. It was introduced in the 2015 paper "Deep Residual Learning for Image Recognition" by Kaiming He et al. To implement ResNet-18 in Python using a deep learning framework like PyTorch or TensorFlow, you can follow these steps: 1. Import the necessary libraries: python import torch import torch.nn as nn 2. Define the ResNet-18 architecture: python class ResNet18(nn.Module): def __init__(self, num_classes=1000): super(ResNet18, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(num_features=64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(num_features=64), nn.ReLU(inplace=True), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(num_features=64), nn.ReLU(inplace=True) ) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(num_features=128), nn.ReLU(inplace=True), nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(num_features=128), nn.ReLU(inplace=True) ) self.layer3 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(num_features=256), nn.ReLU(inplace=True), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(num_features=256), nn.ReLU(inplace=True) ) self.layer4 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(num_features=512), nn.ReLU(inplace=True), nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(num_features=512), nn.ReLU(inplace=True) ) self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self.fc = nn.Linear(in_features=512, out_features=num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x 3. Instantiate the ResNet-18 model: python model = ResNet18(num_classes=10) 4. Train the model on your dataset using a suitable optimizer and loss function. Note: This is just a basic implementation of ResNet-18 in Python using PyTorch. You can modify this architecture or use different deep learning frameworks as per your requirements.
当涉及到图像处理时,深度学习可以用于降低图像的位深。这通常涉及使用卷积神经网络来学习图像的低位深表示。以下是一些关于深度学习进行影像位深降位的资料和链接: 1. "Learning Low Bit-depth Representations for Efficient Inference of Deep Neural Networks" 论文:这篇论文提出了一种使用卷积神经网络学习低位深图像表示的方法,以便在低功耗设备上高效执行推理。链接:https://arxiv.org/abs/1901.01037 2. "Deep Learning for Image Bit-Depth Enhancement" 论文:这篇论文提出了一种使用深度学习提高图像位深的方法,从而提高图像的质量和细节。链接:https://arxiv.org/abs/1701.04891 3. "Deep Learning for Image Downscaling" 论文:这篇论文提出了一种使用深度学习将高分辨率图像降低到低分辨率图像的方法,以减少计算和存储成本。链接:https://arxiv.org/abs/1904.02715 4. "Deep Residual Networks for Image Bit-Depth Enhancement" 论文:这篇论文提出了一种使用深度残差网络提高图像位深的方法,从而提高图像的质量和细节。链接:https://arxiv.org/abs/1711.02017 5. "Low bit-depth image recognition using deep neural networks" 论文:这篇论文提出了一种使用深度神经网络进行低位深图像识别的方法,以提高计算效率和减少能耗。链接:https://ieeexplore.ieee.org/document/7854241 希望这些资料和链接可以帮助你更深入地了解深度学习进行影像位深降位的方法和应用。
Title: Image Recognition Based on Convolutional Neural Networks Abstract: Image recognition has been a popular research topic in the field of computer vision. With the development of deep learning, convolutional neural networks (CNNs) have shown excellent performance in this area. In this paper, we introduce the basic structure and principles of CNNs, and then discuss the application of CNNs in image recognition. Specifically, we focus on the training process of CNNs, including data preprocessing, network initialization, and optimization algorithms. We also compare different CNN architectures and evaluate their performance on benchmark datasets. Finally, we summarize the advantages and limitations of CNNs in image recognition, and suggest some potential directions for future research. Keywords: Convolutional neural networks, image recognition, deep learning, data preprocessing, network initialization, optimization algorithms 1. Introduction Image recognition, also known as image classification, is a fundamental task in computer vision. The goal is to assign a label to an input image from a predefined set of categories. Image recognition has a wide range of applications, such as object detection, face recognition, and scene understanding. Traditional image recognition methods usually rely on handcrafted features and machine learning algorithms, which require domain expertise and extensive manual effort. In recent years, deep learning has emerged as a powerful tool for image recognition, and convolutional neural networks (CNNs) have become the state-of-the-art approach in this area. CNNs are a class of neural networks that are specifically designed for image analysis. They employ convolutional layers to extract local features from the input image, and use pooling layers to reduce the spatial dimensionality. The output of the convolutional layers is then fed into fully connected layers, which perform high-level reasoning and produce the final classification result. CNNs have several advantages over traditional methods. First, they can automatically learn hierarchical representations of the input data, without the need for manual feature engineering. Second, they are able to capture spatial correlations and translation invariance, which are important characteristics of natural images. Third, they can handle large-scale datasets and are computationally efficient. In this paper, we provide a comprehensive overview of CNNs for image recognition. We begin by introducing the basic structure and principles of CNNs, including convolutional layers, pooling layers, and fully connected layers. We then discuss the training process of CNNs, which includes data preprocessing, network initialization, and optimization algorithms. We also compare different CNN architectures, such as LeNet, AlexNet, VGG, GoogLeNet, and ResNet, and evaluate their performance on benchmark datasets, such as MNIST, CIFAR-10, and ImageNet. Finally, we summarize the advantages and limitations of CNNs in image recognition, and suggest some potential directions for future research. 2. Convolutional Neural Networks 2.1 Basic Structure and Principles CNNs are composed of multiple layers, including convolutional layers, pooling layers, and fully connected layers. The input to a CNN is an image, represented as a matrix of pixel values. The output is a predicted label, which is one of the predefined categories. Convolutional layers are the core components of a CNN. They consist of a set of learnable filters, each of which is a small matrix of weights. The filters are convolved with the input image, producing a feature map that highlights the presence of certain patterns or structures. The convolution operation is defined as follows: \begin{equation} y_{i,j}=\sum_{m=1}^{M}\sum_{n=1}^{N}w_{m,n}x_{i+m-1,j+n-1}+b \end{equation} where y_{i,j} is the output at position (i,j) of the feature map, x_{i+m-1,j+n-1} is the input at position (i+m-1,j+n-1), w_{m,n} is the weight at position (m,n) of the filter, b is a bias term, and M and N are the dimensions of the filter. Pooling layers are used to reduce the spatial dimensionality of the feature map. They operate on small regions of the map, such as 2x2 or 3x3 patches, and perform a simple operation, such as taking the maximum or average value. Pooling helps to improve the robustness of the network to small translations and distortions in the input image. Fully connected layers are used to perform high-level reasoning and produce the final classification result. They take the output of the convolutional and pooling layers, flatten it into a vector, and pass it through a set of nonlinear activation functions. The output of the last fully connected layer is a probability distribution over the predefined categories, which is obtained by applying the softmax function: \begin{equation} p_{i}=\frac{e^{z_{i}}}{\sum_{j=1}^{K}e^{z_{j}}} \end{equation} where p_{i} is the predicted probability of category i, z_{i} is the unnormalized score of category i, and K is the total number of categories. 2.2 Training Process The training process of a CNN involves several steps, including data preprocessing, network initialization, and optimization algorithms. Data preprocessing is a crucial step in CNN training, as it can significantly affect the performance of the network. Common preprocessing techniques include normalization, data augmentation, and whitening. Normalization scales the pixel values to have zero mean and unit variance, which helps to stabilize the training process and improve convergence. Data augmentation generates new training examples by applying random transformations to the original images, such as rotations, translations, and flips. This helps to increase the size and diversity of the training set, and reduces overfitting. Whitening removes the linear dependencies between the pixel values, which decorrelates the input features and improves the discriminative power of the network. Network initialization is another important aspect of CNN training, as it can affect the convergence and generalization of the network. There are several methods for initializing the weights, such as random initialization, Gaussian initialization, and Xavier initialization. Random initialization initializes the weights with small random values, which can lead to slow convergence and poor performance. Gaussian initialization initializes the weights with random values drawn from a Gaussian distribution, which can improve convergence and performance. Xavier initialization initializes the weights with values that are scaled according to the number of input and output neurons, which helps to balance the variance of the activations and gradients. Optimization algorithms are used to update the weights of the network during training, in order to minimize the objective function. Common optimization algorithms include stochastic gradient descent (SGD), Adam, and Adagrad. SGD updates the weights using the gradient of the objective function with respect to the weights, multiplied by a learning rate. Adam adapts the learning rate dynamically based on the first and second moments of the gradient. Adagrad adapts the learning rate for each weight based on its past gradients, which helps to converge faster for sparse data. 3. CNN Architectures There have been many CNN architectures proposed in the literature, each with its own strengths and weaknesses. In this section, we briefly introduce some of the most popular architectures, and evaluate their performance on benchmark datasets. LeNet is one of the earliest CNN architectures, proposed by Yann LeCun in 1998 for handwritten digit recognition. It consists of two convolutional layers, followed by two fully connected layers, and uses the sigmoid activation function. LeNet achieved state-of-the-art performance on the MNIST dataset, with an error rate of 0.8%. AlexNet is a landmark CNN architecture, proposed by Alex Krizhevsky et al. in 2012 for the ImageNet challenge. It consists of five convolutional layers, followed by three fully connected layers, and uses the rectified linear unit (ReLU) activation function. AlexNet achieved a top-5 error rate of 15.3% on the ImageNet dataset, which was a significant improvement over the previous state-of-the-art method. VGG is another CNN architecture, proposed by Karen Simonyan and Andrew Zisserman in 2014. It consists of up to 19 convolutional layers, followed by two fully connected layers, and uses the ReLU activation function. VGG achieved a top-5 error rate of 7.3% on the ImageNet dataset, which was the best performance at the time. GoogLeNet is a CNN architecture, proposed by Christian Szegedy et al. in 2014. It consists of 22 layers, including multiple inception modules, which are composed of parallel convolutional and pooling layers at different scales. GoogLeNet achieved a top-5 error rate of 6.7% on the ImageNet dataset, with much fewer parameters than VGG. ResNet is a CNN architecture, proposed by Kaiming He et al. in 2015. It consists of residual blocks, which allow the network to learn residual connections between layers, and avoid the vanishing gradient problem. ResNet achieved a top-5 error rate of 3.57% on the ImageNet dataset, which was the best performance at the time. 4. Conclusion and Future Work In this paper, we provided a comprehensive overview of CNNs for image recognition, including the basic structure and principles, the training process, and the comparison of different architectures on benchmark datasets. CNNs have shown remarkable performance in image recognition, and have become the state-of-the-art approach in this area. However, there are still some challenges that need to be addressed, such as improving the robustness and interpretability of the network, handling noisy and incomplete data, and scaling up the training process to larger datasets and more complex tasks. In the future, we expect to see more research on these topics, and more applications of CNNs in various domains.

最新推荐

javascript $.each用法例子

$Each 是一个常见的 JavaScript 库或框架中的方法,用于迭代数组或对象的元素,并生成相应的 HTML 或其他内容。

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

css怎么写隐藏下拉列表

您可以使用 CSS 中的 display 属性来隐藏下拉列表。具体方法是: 1. 首先,在 HTML 中找到您想要隐藏的下拉列表元素的选择器。例如,如果您的下拉列表元素是一个 select 标签,则可以使用以下选择器:`select { }` 2. 在该选择器中添加 CSS 属性:`display: none;`,即可将该下拉列表元素隐藏起来。 例如,以下是一个隐藏下拉列表的 CSS 代码示例: ```css select { display: none; } ``` 请注意,这将隐藏所有的 select 元素。如果您只想隐藏特定的下拉列表,请使用该下拉列表的选择器来替代 sel

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

android修改电量颜色,android状态栏电池颜色?

您可以通过修改Android系统的主题样式来更改状态栏电池颜色。以下是一些可能的方法: 1. 在您的应用程序主题中添加以下属性: ```xml <item name="android:colorControlNormal">#your_color_here</item> ``` 2. 如果您使用的是Android 6.0及更高版本,则可以使用以下代码更改状态栏电池颜色: ```java if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) { getWindow().setStatusBarColor(getResources(