tensorflow2实现transformer模型
时间: 2023-10-10 15:08:34 浏览: 117
tensorflow的模型
要实现Transformer模型,需要使用TensorFlow 2中的Keras API,以下是基本步骤:
1. 导入所需的库:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout, LayerNormalization
from tensorflow.keras.layers import Embedding, GlobalAveragePooling1D, Concatenate
from tensorflow.keras.models import Model
```
2. 定义Transformer的编码器和解码器层:
```python
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, num_heads, hidden_size, dropout_rate=0.1):
super(EncoderLayer, self).__init__()
self.multihead_attention = tf.keras.layers.MultiHeadAttention(num_heads, hidden_size)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.layer_norm1 = tf.keras.layers.LayerNormalization()
self.feed_forward = tf.keras.Sequential([
Dense(hidden_size * 4, activation='relu'),
Dense(hidden_size),
])
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.layer_norm2 = tf.keras.layers.LayerNormalization()
def call(self, inputs, training):
attn_output = self.multihead_attention(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layer_norm1(inputs + attn_output)
ffn_output = self.feed_forward(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layer_norm2(out1 + ffn_output)
return out2
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, num_heads, hidden_size, dropout_rate=0.1):
super(DecoderLayer, self).__init__()
self.masked_multihead_attention = tf.keras.layers.MultiHeadAttention(num_heads, hidden_size)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.layer_norm1 = tf.keras.layers.LayerNormalization()
self.multihead_attention = tf.keras.layers.MultiHeadAttention(num_heads, hidden_size)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.layer_norm2 = tf.keras.layers.LayerNormalization()
self.feed_forward = tf.keras.Sequential([
Dense(hidden_size * 4, activation='relu'),
Dense(hidden_size),
])
self.dropout3 = tf.keras.layers.Dropout(dropout_rate)
self.layer_norm3 = tf.keras.layers.LayerNormalization()
def call(self, inputs, enc_output, training):
attn1_output = self.masked_multihead_attention(inputs, inputs)
attn1_output = self.dropout1(attn1_output, training=training)
out1 = self.layer_norm1(inputs + attn1_output)
attn2_output = self.multihead_attention(out1, enc_output)
attn2_output = self.dropout2(attn2_output, training=training)
out2 = self.layer_norm2(out1 + attn2_output)
ffn_output = self.feed_forward(out2)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layer_norm3(out2 + ffn_output)
return out3
```
3. 定义Transformer模型:
```python
class Transformer(tf.keras.models.Model):
def __init__(self, num_layers, num_heads, hidden_size, input_vocab_size, target_vocab_size, dropout_rate=0.1):
super(Transformer, self).__init__()
self.embedding_size = hidden_size
self.num_layers = num_layers
self.embedding = Embedding(input_vocab_size, self.embedding_size, mask_zero=True)
self.pos_encoding = self.positional_encoding(input_vocab_size, self.embedding_size)
self.encoder_layers = [EncoderLayer(num_heads, hidden_size, dropout_rate)
for _ in range(num_layers)]
self.decoder_layers = [DecoderLayer(num_heads, hidden_size, dropout_rate)
for _ in range(num_layers)]
self.final_dense = Dense(target_vocab_size, activation='softmax')
def call(self, inputs, targets, training):
inputs = self.embedding(inputs)
inputs *= tf.math.sqrt(tf.cast(self.embedding_size, dtype=tf.float32))
inputs += self.pos_encoding[:, :tf.shape(inputs)[1], :]
enc_output = inputs
for i in range(self.num_layers):
enc_output = self.encoder_layers[i](enc_output, training)
targets = self.embedding(targets)
targets *= tf.math.sqrt(tf.cast(self.embedding_size, dtype=tf.float32))
targets += self.pos_encoding[:, :tf.shape(targets)[1], :]
dec_output = targets
for i in range(self.num_layers):
dec_output = self.decoder_layers[i](dec_output, enc_output, training)
final_output = self.final_dense(dec_output)
return final_output
def positional_encoding(self, seq_len, hidden_size):
pos = tf.range(seq_len, dtype=tf.float32)[:, tf.newaxis]
i = tf.range(hidden_size, dtype=tf.float32)[tf.newaxis, :]
angle_rates = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(hidden_size, dtype=tf.float32))
angle_rads = pos * angle_rates
sines = tf.math.sin(angle_rads[:, 0::2])
cosines = tf.math.cos(angle_rads[:, 1::2])
pos_encoding = tf.concat([sines, cosines], axis=-1)
pos_encoding = pos_encoding[tf.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
```
4. 编译和训练模型:
```python
num_layers = 4
num_heads = 8
hidden_size = 512
input_vocab_size = len(input_vocab)
target_vocab_size = len(target_vocab)
dropout_rate = 0.1
learning_rate = 0.001
transformer = Transformer(num_layers, num_heads, hidden_size, input_vocab_size, target_vocab_size, dropout_rate)
transformer.compile(optimizer=tf.keras.optimizers.Adam(learning_rate),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
transformer.fit(train_dataset, epochs=50)
```
以上是基本的实现过程,可以根据实际需求进行修改。
阅读全文