q-learning算法栅格最短路径matlab代码
时间: 2023-08-27 20:05:06 浏览: 106
以下是一个简单的q-learning算法栅格最短路径的MATLAB代码示例:
```
clear all;
clc;
%定义初始状态和目标状态
start_state = [1,1];
goal_state = [10,10];
%定义行动空间和奖励矩阵
action_space = ['N','S','E','W'];
reward_matrix = -ones(10,10);
reward_matrix(goal_state(1),goal_state(2)) = 100;
%定义Q矩阵和学习参数
Q = zeros(10,10,4);
alpha = 0.5;
gamma = 0.9;
epsilon = 0.1;
%开始训练
for episode = 1:10000
%将智能体放在起点
current_state = start_state;
while (~isequal(current_state,goal_state))
%选择行动
if rand < epsilon
action = randi(4);
else
[~,action] = max(Q(current_state(1),current_state(2),:));
end
%执行行动
next_state = current_state + [0,-1;0,1;1,0;-1,0](action,:);
next_state = min(max(next_state,1),10);
%更新Q矩阵
Q(current_state(1),current_state(2),action) = (1-alpha)*Q(current_state(1),current_state(2),action) + alpha*(reward_matrix(next_state(1),next_state(2))+gamma*max(Q(next_state(1),next_state(2),:)));
%更新当前状态
current_state = next_state;
end
end
%使用Q矩阵执行最短路径
current_state = start_state;
path = [current_state];
while (~isequal(current_state,goal_state))
[~,action] = max(Q(current_state(1),current_state(2),:));
next_state = current_state + [0,-1;0,1;1,0;-1,0](action,:);
next_state = min(max(next_state,1),10);
path = [path;next_state];
current_state = next_state;
end
%绘制结果
figure();
plot(path(:,2),path(:,1),'-o');
grid on;
xlim([0.5 10.5]);
ylim([0.5 10.5]);
xlabel('X');
ylabel('Y');
title('Q-Learning Algorithm for Shortest Path Problem in Grid World');
```
该代码使用了一个简单的4个行动空间(北、南、东、西)和一个-1的奖励矩阵,表示无论走哪个方向都会受到一点惩罚。Q矩阵是一个三维矩阵,其中前两个维度表示状态,第三个维度表示行动。在训练过程中,智能体随机选择行动或者根据当前Q值选择最优行动,并更新Q矩阵。在执行最短路径时,智能体根据当前Q值选择最优行动,直到到达目标状态。最终,代码将路径可视化并绘制出来。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![mp4](https://img-home.csdnimg.cn/images/20210720083504.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)